非晶态固体材料因其离子电导率、稳定性和可加工性等优良特性,在储能领域引起了越来越多的关注。然而,与块体晶体材料相比,密度泛函理论 (DFT) 计算的规模限制和实验方法的分辨率限制阻碍了对这些高度复杂亚稳态系统的基本理解。为了填补知识空白并指导非晶态电池材料和界面的合理设计,我们提出了一个基于机器学习的原子间势的分子动力学 (MD) 框架,该框架经过动态训练,以研究非晶态固体电解质 Li 3 PS 4 及其保护涂层非晶态 Li 3 B 11 O 18 。使用机器学习势使我们能够在 DFT 无法访问的时间和长度尺度上模拟材料,同时保持接近 DFT 水平的精度。这种方法使我们能够计算非晶化能、非晶-非晶界面能以及界面对锂离子电导率的影响。这项研究证明了主动学习的原子间势在将从头算建模的应用扩展到更复杂和现实的系统(例如非晶材料和界面)方面的良好作用。
•35岁的男性患有艾滋病毒的男性出现了痛苦的皮疹和发烧。•四天前,他观察到结节性阴茎病变,最初是鲁尿的,但发展为疼痛的囊泡和溃疡。•昨天,他出现了发烧和类似的脸,树干和四肢的病变。他的口腔病变疼痛。•他最近从中非(卢旺达)返回9天,在离开美国前一天,他认可与另一名男性的无保护性接触。•检查以发烧,双侧腹股沟和腋窝淋巴结病以及脸部,躯干,手臂,口咽和阴茎的多个离散的脓疱和囊泡而引人注目。树干上的病变已经开始与周围的温暖和红斑结合。未发现眼病变。他能够忍受po。•HSV,梅毒,淋病和衣原体的测试是阴性的。阴茎病变的拭子对正托病毒呈阳性。随后的遗传分析确定了MPOX进化枝1b。
摘要 锂硫电池因其突出的理论能量密度而被视为未来储能系统的有希望的候选材料。然而,它们的应用仍然受到几个关键问题的阻碍,例如硫物质的低电导率、可溶性多硫化锂的穿梭效应、体积膨胀、缓慢的氧化还原动力学以及不可控的锂枝晶形成。人们投入了大量的研究精力来突破阻碍锂硫电池实现实际应用的障碍。最近,由于不含添加剂/粘合剂、体积变化的缓冲、高硫负载和锂枝晶的抑制,纳米阵列 (NA) 结构已成为锂硫电池中高效耐用的电极。在本文中,回顾了 NA 结构在锂硫电池中的设计、合成和应用的最新进展。首先,概述了 NA 结构电极在锂硫电池中的多功能优点和典型的合成策略。其次,NA 结构的应用
图 1:(a) 不锈钢晶间开裂 (b) Li 对 LLZO 晶间渗透的 SEM 图像。SCC (c) 和 LLZO 中的锂镀层 (d) 引起的开裂扩展示意图。相应的 SCC 机制。
在750℃下烧成6小时以上,成为单斜晶WO 3 相。 P-2、P-3在烧成前为单斜晶系WO 3 、三斜晶系WO 3 、单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297),但在750℃下烧成6小时以上,变为单斜晶系W 0.71 钼 0.29 O 3 (PDF 01-076-1297) 和矩形 W 0.4 Mo 0.6 O 3 (PDF 01-076-1280)。 P-4在750℃下烧制24小时之前,单斜晶系W 0.71 Mo 0.29 O 3 (PDF 01-076-1297)、矩形W 0.4 Mo 0.6 O 3 和单斜晶系MoO 3 混合,但经过100小时后。煅烧后,MoO 3 峰消失,单斜晶系W 0.71 Mo形成了0.29 O 3 和矩形晶体W 0.4 Mo 0.6 O 3 。 P-5在烧成前为单斜MoO 3 (PDF PDF 00-047-1081),但烧成6小时以上后,变为具有层状结构的矩形MoO 3 (PDF 03-065-2421)。
摘要 锂离子电池以其便携性、高能量密度、可重复使用等特点在当今世界被广泛使用。在极端条件下,锂离子电池容易发生泄漏、燃烧甚至爆炸,因此提高锂离子电池的安全性成为人们关注的焦点。研究者认为使用固体电解质替代液体电解质可以解决锂电池的安全问题,而固体聚合物电解质由于价格低廉、加工性好、安全性高而受到越来越多的关注。然而,聚合物电解质在极端条件下也容易分解、燃烧。另外,由于锂金属负极表面电荷分布不均匀,会不断形成锂枝晶,锂枝晶引起的短路会造成电池热失控,因此聚合物固态电池的安全性仍然是一个挑战。本文总结了电池的热失控机理,介绍了电池滥用测试标准,并综述了近年来在高安全性聚合物电解质方面的研究以及聚合物电池锂负极问题的解决策略。最后对安全的聚合物固态锂电池的发展方向进行了展望。
119, 141, 146, 147, 359 晶间断裂, 18, 121,247 晶间扩展, 64 晶间应力腐蚀裂纹, 12, 13, 21, 39, 132, 214, 296 扩展, 64 电阻, 158 敏感性, 296 离子浓度, 214
