可再生氢在盐洞中的储存需要快速注入和生产速率,以应对能源生产和消费之间的不平衡。这种操作条件引起了人们对盐洞穴的机械稳定性的担忧。为盐学选择适当的构成模型是研究此问题的重要一步,文献中已经介绍了许多具有多个参数的本构模型。但是,基于应力应变数据,可靠地确定哪个模型和哪个参数代表给定岩石的强大校准策略仍然是一个未解决的挑战。在社区中,我们首次提出了一个多步策略,以根据许多用于盐岩的变形数据集确定单个参数集。为此,我们首先开发了一个综合的构造模型,能够捕获瞬态,反向和稳态蠕变的所有相关非线性变形物理。然后,通过将校准过程作为优化问题来实现单个代表性材料参数的确定,并为其使用该问题。动态数据集成是通过多步校准策略来实现的,对于一次可用的一个实验。此外,我们的校准策略可以灵活地考虑岩石样品之间的轻度异质性,从而产生一组代表变形数据集的参数。我们的绩效分析结果表明,提出的校准策略是可靠的。作为对所提出方法的严格数学分析,缺乏相关的实验数据集,我们考虑了广泛的合成实验数据,灵感来自文献中现有的稀疏相关数据。此外,随着包含更多数据进行校准,模型的精度变得越来越好。
2 印度北方邦勒克瑙玛赫西信息技术大学电子电气工程系助理教授 1 ------------------------------------------------------------------***-------------------------------------------------------------------------------- 摘要 - 随着对电子设备、高效变速驱动器、电力电子控制器以及电力系统中越来越多的非线性负载进行监测、控制和保护的需求不断增加,电能质量已成为公用事业和客户日益关注的问题。本文介绍了与电能质量或电能质量问题及其缓解技术相关的问题。考虑了一个实用系统来分析电压骤降、谐波和瞬变等电能质量问题,并使用 DSTATCOM 并结合应用 DVR 和 DSTATCOM 补偿装置,并通过 MATLAB/Simulink 模型进行介绍。关键词:电能质量、DVR、DSTATCOM。1. 介绍电能质量已成为电力公司和客户关注的主要问题。在许多国家,电能质量不足的影响每年导致数十亿美元的浪费。这是由于大多数行业粗心大意,没有升级其工厂,从而导致产品损失、生产时间损失、清理和重新校准过程而产生非常高的成本。电气设备中新技术的复杂性和敏感性是造成电能质量问题(例如供电网络上的电压扰动)的主要原因之一。电力电子设备对电压扰动更为敏感,导致电压扰动大幅增加。很难检测导致电能质量问题的来源。大多数电能质量问题的因素超出了公用事业的控制范围,并且永远无法完全消除。一些电能质量问题的来源按发生频率排序如下[1,3]:
第 5 章:研究方法 ................................................................................................ 68 5.1 简介 ................................................................................................................ 68 5.2 数据收集 .............................................................................................................. 69 5.2.1 数据分类及准确性 ........................................................................................ 71 5.2.2 现场访问 ...................................................................................................... 72 5.3 基于统计回归的基准测试 ............................................................................. 73 5.3.1 统计分析 ...................................................................................................... 75 5.3.1.1 相关性分析 ............................................................................................. 76 5.3.1.2 回归分析 ............................................................................................. 77 5.3.1.3 箱线图 ............................................................................................. 77 5.4 建筑模拟 ............................................................................................................. 78 5.4.1 EnergyPlus 室内游泳池模块 ............................................................................. 79 5.4.1.1 室内游泳池的能量平衡 ...................................................................................... 80 5.4.1.2 泳池水面的对流 ...................................................................................... 81 5.4.1.3 泳池水面的蒸发 ...................................................................................... 81 5.4.1.4 与泳池水面的辐射交换 ............................................................................. 82 5.4.1.5 通过泳池底部的传导 ............................................................................. 83 5.4.1.6 补充泳池水供应 ............................................................................................. 83 5.4.1.7 人体热量增益 ............................................................................................. 83 5.4.1.8 来自辅助泳池加热器的热量 ............................................................................. 84 5.4.1.9 泳池加热以控制泳池水温 ............................................................................. 84 5.4.1.10 泳池或表面热平衡方程总结 ............................................................................. 85 5.4.1.11 泳池流速........................................................................... 85 5.4.1.12 舒适度和健康 ................................................................................ 86 5.4.1.13 空气输送率(室内泳池) .............................................................. 86 5.4.2 EnergyPlus 模型 ...................................................................................... 86 5.4.3 蒸发、热损失和补充水量 ...................................................................... 88 5.4.4 选择水上运动中心进行模拟的标准 ...................................................................................... 92 5.4.5 如何模拟用水量 ...................................................................................................... 93 5.4.6 模型校准过程 ...................................................................................................... 93 5.4.7 参数研究 ............................................................................................................. 95 5.5 能源来源和温室气体转化 ...................................................................................... 96 5.5.1 温室气体排放转化 ...................................................................................... 98 5.6 结论 ...................................................................................................................... 99
我们介绍了一个多物理学和几何多尺度计算模型,适合描述由四腔机电模型驱动的整个人心脏的血液动力学。我们首先介绍了一项关于生物物理详细的RDQ20主动收缩模型(Regazzoni等,2020)的校准的研究,该模型能够重现血液动力学生物标志物的生理范围。然后,我们证明了力产生模型再现某些显微镜机制的能力,例如力对纤维缩短速度的依赖,对于捕获总体生理机械和流体动力学宏观行为至关重要。这激发了使用具有较高生物物理有效性的多尺度模型的需求,即使感兴趣的输出相对于宏观尺度。我们表明,使用高实现机电模型,结合了详细的校准过程,使我们能够以机械和血液动力学数量来实现显着的生物物理效果。的确,我们的机电驱动的CFD模拟 - 在整个心脏的解剖学精确几何形状上进行 - 提供了与心脏生理学相匹配的结果(以流量模式)和定量(在与生物标志物在生物标记中的比较时)。此外,我们考虑了左束分支块的病理病例,我们研究了由于我们的多物理综合模型,因此电气异常对心脏血流动力学的后果。我们提出的计算模型可以忠实地预测病理性条件下左心室的延迟和增加的壁剪应力。在集成框架中不同的物理过程的相互作用使我们能够通过捕获和再现人类心脏的内在多物理性质来忠实地描述和建模这种病理。
对地球表面海洋的高光谱光学观察到空间的一种手段,可以提高我们对海洋生物学和生物地球化学的理解。NASA的浮游生物,气溶胶,云,海洋生态系统(PACE)卫星任务,其中包括高光谱海洋色仪器(OCI),将提供表面海洋的辐射测量,并在近乎uv to to Nir范围内进行接近连续的光谱分辨率。在卫星海洋彩色任务的一生中保持舒适的准确性需要一个适合系统的替代校准(SVC)和产品验证的程序。系统替代校准过程将卫星传感器数据与原位辐射/光学测量结合在一起,以消除由于卫星辐射传感器校准和大气校正的组合误差而导致的潜在偏差。因此,需要高精度,高光谱分辨率内部辐射测量值,以提供卫星衍生产品的主要真实来源。为满足需求,已经开发了一种新型的原位辐射系统,称为HyperNAV,并经过了严格的特征并测试了领域。HyperNAV的关键属性是耦合到单个光谱仪的双向上升辐射头,光谱分辨率在320 - 900 nm上〜2.2 nm(全宽度,半最大),用于黑暗测量值的集成快门系统,以及集成的倾斜和压力传感器。本文介绍了HyperNAV设计,原位操作模式和验证结果。HyperNAV操作模式包括传统的专业填充和表面模式,以及与自主的专业填充层集成以进行无关紧要的部署,为自主平台网络提供了新的能力,以支持长期的长期需求,以实现高光谱海洋远程远程远程感应。
锂离子电池的准确建模对于从电动汽车(EV)到网格存储的一系列AP平板优化性能和安全至关重要。本文使用60 AH Prismatic石墨/锂磷酸铁电池作为案例研究,对两种普遍的电池建模方法进行了两种普遍的电池建模方法:等效电路模型(ECM)和基于物理的模型(PBM)。这项工作的重点是通过在恒定和可变的电流密度下的不同环境温度下的一组全面的电气测试(包括全球协调的轻型车辆测试周期(WLTC)协议),通过在不同环境温度下进行全面的电气测试来开发,参数化和交叉验证这些方法。此评估不仅评估了ECM和PBM的准确性和可靠性,还强调了其优势和局限性。ECM在其校准范围内和可变电流轮廓内显示了计算速度,易于校准和准确性的优势。然而,其准确性在较高的电流下会降低,尤其是对于延长的电流脉冲以及校准范围之外的延长,这在1C以上的充电方案中证明了这一点。相反,PBM在校准数据集之外保持准确性,但需要估计许多物理参数,艰苦的校准过程以及用于可变当前情况的扩展计算时间。在所研究的条件范围内(从C/3到2C之间的10℃和40℃),ECM的电压预测的平均误差为51.5 mV,PBM的平均误差为19.3 mV,而ECM的平均误差为0.9℃,而对于温度预测,PBM的平均值为0.9°C。总而言之,虽然ECM适用于以短暂和低强度的电荷脉冲来重现恒定放电或类似WLTC的轮廓,但PBM强度在于其对高速运营的预测性,使其成为模拟现实的EV负载操作和优化快速收费协议的互补工具。这些见解有助于电池技术的持续发展,重点是现实且适用的模型开发和参数化。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
利用代码调制视觉诱发电位 (c-VEP) 形式的非周期性闪烁视觉刺激代表了反应性脑机接口 (rBCI) 领域的一项关键进步。c-VEP 方法的主要优势在于模型的训练与目标的数量和复杂性无关,这有助于减少校准时间。尽管如此,现有的 c-VEP 刺激设计可以在视觉用户体验方面进一步改进,同时实现更高的信噪比,同时缩短选择时间和校准过程。在本研究中,我们介绍了一种创新的代码 VEP 变体,称为“突发 c-VEP”。这种原创方法涉及以故意缓慢的速率呈现短暂的非周期性视觉闪光,通常每秒闪光两次到四次。这种设计背后的原理是利用初级视觉皮层对低级刺激特征的瞬时变化的敏感性来可靠地引发一系列独特的视觉诱发电位。与其他类型的快节奏代码序列相比,突发 c-VEP 表现出良好的特性,可以使用卷积神经网络 (CNN) 实现高按位解码性能,从而有可能在需要更少校准数据的情况下实现更快的选择时间。此外,我们的研究重点是通过减弱视觉刺激对比度和强度来降低 c-VEP 的感知显着性,以显著提高用户的视觉舒适度。通过涉及 12 名参与者的离线 4 类 c-VEP 协议测试了所提出的解决方案。按照因子设计,参与者被指示关注 c-VEP 目标,其模式(突发和最大长度序列)和幅度(100% 或 40% 幅度深度调制)在实验条件下被操纵。首先,全幅突发 c-VEP 序列表现出更高的准确度,范围从 90.5%(使用 17.6 秒的校准数据)到 95.6%(使用 52.8 秒的校准数据),而 m 序列的准确度为 71.4% 到 85.0%。两种代码的平均选择时间(1.5 秒)与之前研究报告相比更为有利。其次,我们的研究结果表明,降低刺激强度仅会稍微降低突发代码序列的准确度至 94.2%,同时会显着改善用户体验。总之,这些结果证明了所提出的突发代码在性能和可用性方面推进反应式 BCI 的巨大潜力。收集的数据集以及所提出的 CNN 架构实现均通过开放存取存储库共享。
近年来,已经出现了许多用于捕捉三维环境和物体的传感器系统。除了激光扫描仪和大地测量全站仪外,这里还必须列举立体视觉和基于三角测量的系统。特别是激光扫描仪在速度和准确性方面已成为最先进的技术,能够捕捉数十米大小的物体。激光扫描仪的主要缺点是它们的顺序操作模式。它们逐点测量。几年前,开发了一种功能齐全的新技术,能够同时以高分辨率捕捉环境。所谓的范围成像 (RIM) 或闪光激光雷达相机基于数字成像技术,并具有测量每个像素中相应物体点距离的能力。距离测量基于直接或间接飞行时间原理。由于其并行采集高达视频帧速率,RIM 相机甚至可以捕捉移动物体。就光学依赖性而言,可以得出所捕获场景的 3-D 坐标。距离测量的标称精度为几毫米。如果属性和特性变得稳定且可预测,RIM 可能成为许多应用的首选技术。例如,汽车、机器人和安全系统。标称坐标和测量坐标之间的显著偏差发生在几厘米的范围内。只有深入的研究才能帮助达到这里的理论极限。本论文讨论了影响 RIM 相机测量的几个方面。首先,简要介绍与 RIM 相关的基本技术。除了成像和距离测量方法外,RIM 还区分了两个基本原理。此外,重点放在特定的限制上。在这项工作期间,有三种不同的相机问世:瑞士 CSEM / MESA Imaging 的 SwissRanger SR-2 和 SR-3000,以及后来德国 PMDtec 的 3k-S。这三款相机基于间接飞行时间原理,配备了不同的复杂功能。除了集成的校准和校正功能外,抑制背景照明也是主要功能之一。但是,这些相机仅用于高度发达的演示。根据所需权利要求,对特定应用领域(如汽车或机器人)的适应性可产生专门的属性。对现有相机类型的分析有助于更深入地了解该技术。所分析相机的原始数据精度不超过几厘米。为了研究现有相机的属性,必须开发特殊的实验装置。这项工作的主要部分涉及 RIM 相机组件的研究和校准。通过摄影测量相机校准解决光学系统的几何偏差。根据偏差和统计数据分析距离测量系统。因此,指出了精度和准确度的局限性。除了散射效应的影响外,还讨论了积分时间、发射系统和入射角、目标反射率、外部和内部温度以及最终的线性度和固定模式噪声。此外,还介绍了一种系统校准过程的方法。由于影响参数的复杂性,尚未对各种影响参数的测量数据进行完整的校正。但高度系统的依赖关系预示着未来会出现复杂的校准程序。这项工作有助于理解传感器。
Ahrens,B.,Braakhekke,M.C.,Guggenberger,G.,Schrumpf,M。,&Reichstein,M。(2015年)。 吸附,DOC传输和微生物相互作用对土壤有机碳概况的14 C年龄的贡献:校准过程模型的见解。 土壤生物学和生物化学,88,390–402。 Amato,M。,&Ladd,J。N.(1992)。 土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。 Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Ahrens,B.,Braakhekke,M.C.,Guggenberger,G.,Schrumpf,M。,&Reichstein,M。(2015年)。吸附,DOC传输和微生物相互作用对土壤有机碳概况的14 C年龄的贡献:校准过程模型的见解。土壤生物学和生物化学,88,390–402。Amato,M。,&Ladd,J。N.(1992)。 土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。 Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Amato,M。,&Ladd,J。N.(1992)。土壤中14个C标记的葡萄糖和豆类材料的分解:有机残留C和微生物生物量的积累的特性C.土壤生物学和生物化学,24(5),455-464。Amézketa,E。(1999)。 土壤骨料稳定性:评论。 可持续农业杂志,14(2-3),83–151。 Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。 (2016)。 使用多生物标志物方法来追踪有机碳的源和空间分布。 科学报告,6(1),1-12。 Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I. 土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。 土壤生物学和生物化学,122,19–30。 Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Amézketa,E。(1999)。土壤骨料稳定性:评论。可持续农业杂志,14(2-3),83–151。Angst,G.,John,S.,Mueller,C.W.,Kögel-Knabner,I。和Rethemeyer,J。(2016)。使用多生物标志物方法来追踪有机碳的源和空间分布。科学报告,6(1),1-12。Angst,G.,Messinger,J.,Greiner,M.,Häusler,W.,Hertel,D.,Kirfel,K.,Kögel-Knabner,I.土壤有机碳在表层土壤中,由母体伴侣控制,根际中的碳输入以及微生物衍生的化合物控制。土壤生物学和生物化学,122,19–30。Barthès,B。和Roose,E。(2002)。 总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。 Catena,47(2),133–149。 Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Barthès,B。和Roose,E。(2002)。总稳定性是土壤对径流和侵蚀的敏感性的指标;在多个级别进行验证。Catena,47(2),133–149。Batjes,N。H.(1996)。 世界土壤中的总碳和氮。 欧洲土壤科学杂志,47(2),151–163。 (2019)。Batjes,N。H.(1996)。世界土壤中的总碳和氮。欧洲土壤科学杂志,47(2),151–163。(2019)。Baumert,V。L.,Vasilyeva,N。A.,Vladimirov,A。A.,Meier,I。C.,Kögel-Knabner,I。,&Mueller,C。W.(2018)。 根部散发诱导真菌在地下土壤中促进的土壤大型聚集。 环境科学领域,6,140。https://doi.org/10.3389/fenvs.2018.00140 Benard,P.,Zarebanadkouki,M.,Brax,M.,M.,M.,Kaltenbach,R. Carminati,A。 土壤中的微水域壁细分市场:粘液和EP如何改变根际和其他生物热点的生物物理特性。 vadose Zone Journal,18(1),1-10。 Bimüller,C.,Mueller,C.W.,VonLützow,M.,Kreyling,O.,Kölbl,A. (2014)。 在森林表土的土壤粒度分数中脱钩的碳和氮矿化。 土壤生物学和生物化学,78,263–273。 Brunauer,S.,Emmett,P。H.,&Teller,E。(1938)。 多分子层中气体吸附。 美国化学学会杂志,60(2),309–319。A.,Meier,I。C.,Kögel-Knabner,I。,&Mueller,C。W.(2018)。根部散发诱导真菌在地下土壤中促进的土壤大型聚集。环境科学领域,6,140。https://doi.org/10.3389/fenvs.2018.00140 Benard,P.,Zarebanadkouki,M.,Brax,M.,M.,M.,Kaltenbach,R. Carminati,A。土壤中的微水域壁细分市场:粘液和EP如何改变根际和其他生物热点的生物物理特性。vadose Zone Journal,18(1),1-10。Bimüller,C.,Mueller,C.W.,VonLützow,M.,Kreyling,O.,Kölbl,A.(2014)。在森林表土的土壤粒度分数中脱钩的碳和氮矿化。土壤生物学和生物化学,78,263–273。Brunauer,S.,Emmett,P。H.,&Teller,E。(1938)。多分子层中气体吸附。美国化学学会杂志,60(2),309–319。