转录因子(TFS)通过识别和结合特定的DNA序列来调节基因表达。有时,这些调节元件可能会被核小体遮住,从而使其无法访问TF结合。TFS和核小体之间DNA占用率的竞争以及相关的基因调节输出是基因组中编码的顺式调节信息的重要结果。但是,这些序列模式是微妙的,并且仍然难以解释。在这里,我们引入了Chromwave,这是一个深入学习模型,首次以显着的准确性来预测TF和核小体占用的竞争曲线。使用短片和长碎片MNase-seq数据训练的模型成功地学习了整个酵母基因组中TF和核小体占用的序列偏好。他们从区域概括了核小体驱逐
在真核生物中,DNA主要通过缠绕组蛋白核心而获得高度紧凑的结构。DNA自然缠绕在组蛋白核心周围形成1.7个左手超螺旋,导致染色质中形成负超螺旋。在转录过程中,在聚合酶后方产生的负超螺旋可能在触发核小体重组中发挥作用。为了阐明超螺旋如何影响DNA缠绕组蛋白核心的动力学,我们开发了一个新模型来模拟DNA和组蛋白之间复杂的相互作用。我们的模拟表明,正超螺旋和负超螺旋DNA都能够缠绕在组蛋白核心周围以采用核小体构象。值得注意的是,我们的研究结果证实了在核小体缠绕过程中对负超螺旋DNA的强烈偏好,并且揭示了负超螺旋的旋转和扭曲都有利于缠绕组蛋白的DNA的形成。此外,对同一 DNA 模板上的多个核小体的模拟表明,核小体倾向于在原始核小体附近组装。这一对核小体自发形成的理解进展可能有助于深入了解染色质组装的复杂动力学以及控制染色质结构和功能的基本机制。
摘要:单分子测量值提供了对分子过程的详细机械见解,例如在基因组调节中,DNA访问受核小体和染色质机械控制。然而,作用于定义的染色质底物上的核因子的实时单分子观察对于定量和可重复性执行具有挑战性。在这里,我们提出XSCAN(染色质关联的多路复用单分子检测),一种通过同时对核小体库的成像并行化单分子实验的方法,其中每种核小体类型在其核体DNA中携带一个可识别的DNA序列。并行实验。我们使用这种方法来揭示Cas9核酸酶在入侵染色质DNA作为PAM位置的函数时如何克服核小体屏障。
规范BRG/BRM相关因子(CBAF)复合物对于在哺乳动物细胞中增强剂的染色质开放至关重要。但是,开放染色质的性质尚不清楚。在这里,我们表明,除了产生无组蛋白的DNA外,CBAF还会产生稳定的半糖体样中核小体颗粒,这些核小体颗粒含有与50-80 bp的DNA相关的四个核心组蛋白。我们的全基因组分析表明,CBAF通过靶向和分裂脆弱的核小体来制造这些颗粒。在小鼠胚胎干细胞中,这些亚核体成为主转录因子OCT4的体内结合底物,而与OCT4 DNA基序的存在无关。在增强子处,与在无组蛋白DNA上占据的区域相比,OCT4 – subnuceosoms相互作用增加了Oct4占用率,并将OCT4结合的基因组间隔放大至一个数量级。我们提出,CBAF依赖性亚核体策划了一种分子机制,该分子机制在其DNA基序以外的染色质开放中发挥了OCT4功能。
如今,基因改造基因组经常用于许多基础和应用研究领域。在许多研究中,编码或非编码区域被故意修改,以改变蛋白质序列或基因表达水平。修改基因组中的一个或多个核苷酸也会导致基因表观遗传调控的意外变化。因此,在设计具有许多突变的合成基因组时,能够预测这些突变对染色质的影响将非常有用。我们在此开发了一种深度学习方法,可以量化每个可能的单个突变对整个酿酒酵母基因组上核小体位置的影响。这种类型的注释轨道可用于设计改良的酿酒酵母基因组。我们进一步强调了该轨道如何为驱动核小体在体内位置的序列依赖机制提供新的见解。关键词——深度学习、基因组学、酿酒酵母、突变、合成生物学、核小体、DNA 基序
直接研究基因型与表型之间关系的理想技术将分析RNA和DNA基因组全基因组以及单细胞分辨率。但是,现有工具缺乏对复杂肿瘤和组织进行全面分析所需的吞吐量。我们引入了一种高度可扩展的方法,用于在核小体耗竭后(Defnd-Seq)共同分析DNA和表达。在defnd-seq中,核是核小体耗尽的,标记的,并分离成单个液滴,用于mRNA和基因组DNA条形码。一旦核耗尽了核小体,就可以使用广泛可用的10倍基因组液滴微流体技术和商业试剂盒进行后续步骤,而无需实验性修饰。我们证明了来自细胞系和存档手术样本的数千个单个核的高复杂性mRNA和GDNA测序文库的产生,以将基因表达表型与拷贝数和单核苷酸变体相关联。
糖尿病肾病 (DKD) 仍然是全球慢性肾病 (CKD) 的主要原因。DKD 的发病机制受功能、组织病理学和免疫机制的影响,包括 NLRP3 炎症小体活性和氧化应激。多年来,钠-葡萄糖协同转运蛋白 2 抑制剂 (SGLT2i) 在多项临床研究中显示出代谢益处和减缓 DKD 进展的能力。最近的研究表明,抗糖尿病活性还延伸到抑制炎症反应,包括调节 NLRP3 炎症小体、减少促炎标志物和减少氧化应激。在这里,我们回顾了 SGLT2i 在 CKD 治疗中的疗效,并讨论了炎症反应在 DKD 发展中的作用,包括它与 NLRP3 炎症小体和氧化应激的关系。
死亡和 959,000 例流感相关住院病例( Rolfes 等人,2019 年)。根据美国疾病控制与预防中心 (CDC) 的数据,大约 90% 的流感相关死亡和 70% 的报告住院病例发生在 65 岁以上的成年人中( Rolfes 等人,2019 年)。老年人因免疫衰老而遭受流感及其潜在合并症的加剧,免疫衰老是与年龄相关的免疫细胞生物学固有变化的集合,导致 B 细胞和 T 细胞免疫反应减弱( Crooke 等人,2019a;Crooke 等人,2019b)。免疫衰老不仅限制了对自然感染的免疫反应,而且损害了对疫苗接种的反应,从而阻碍了针对季节性流感的主要预防策略。尽管疫苗制剂是专门为改善老年人的免疫反应而设计的,但这些疫苗诱导的流感特异性抗体滴度通常仍然低于接种标准剂量三价流感疫苗 (TIV) 的年轻成人 (Goodwin 等人,2006 年;Chen 等人,2011 年)。免疫衰老以一系列复杂的生物学变化为标志,这些变化显然会影响适应性免疫;然而,人们对与年龄相关的先天免疫系统变化的理解或特征了解甚少。在流感背景下研究这种现象的有限数量的研究表明,细胞因子产生失调是与不良免疫结果相关的主要因素之一。 Sridharan 等人观察到老年浆细胞样树突状细胞 (pDC) 在受到流感病毒刺激后,IFN 型和 IFN III 型分泌减少 Sridharan et al. (2011),并且还报道了细胞因子反应减少和流感特异性抗体滴度之间的相关性 ( Panda et al., 2010 )。在老年人的髓样树突状细胞 (mDC) 和 pDC 中接受 Toll 样受体 (TLR) 刺激后,IL-6、TNF-α、IL-12p40 和 IFN-α 的产生显著减少,这表明 TLR 功能失调和流感抗体反应之间存在密切关联 ( Panda et al., 2010 )。虽然这些研究强调了衰老过程中先天免疫的重要方面,但目前尚不清楚免疫衰老对流感病毒的先天免疫反应的影响程度。炎症小体是一类由 NOD 样受体 (NLR) 组成的多聚体复合物,负责某些先天细胞因子(例如 IL-1 β、IL-18)的酶促加工和成熟 (Schroder 和 Tschopp,2010),研究发现,炎症小体复合物对甲型流感病毒的识别对于建立保护性适应性免疫至关重要 (Ichinohe 等人,2009)。炎症小体通过两种不同的信号事件识别细胞内病原体或其他细胞应激源,从而被激活。在流感病毒中,TLR7 识别病毒 RNA 导致 NF- κ B 介导炎症细胞因子前体的表达(信号 1),而流感病毒 M2 蛋白或 PB1-F2 聚合酶刺激炎症小体复合物中 NLRP3(NOD-、LRR- 和吡啶结构域蛋白 3)的激活(信号 2)(Ichinohe 等人,2010 年;McAuley 等人,2013 年)。炎症小体的激活
在细胞生理学中解剖3D-染色质组织是研究的关键领域。通过使用定量的超分辨率纳米镜检查,我们确定了一种新型的染色质纤维组件及其与幼稚多能性的关系。核小体以各种大小的组(控制基因功能的核小体离合器)排列。我们最近可视化了人类细胞中粘蛋白介导的环的结构,并发现转录依赖性超螺旋控制循环形成和3D基因组组织。此外,通过结合成像和基因组方法,我们设计了MIOS,这是一种强大的综合策略,可以模拟核小体分辨率下关键多能基因的折叠。总体上,超分辨率显微镜结合了基因组和建模方法,使我们能够剖析转录介导的超串联的功能作用和基因的核小体水平结构,这最终是控制基因活性的关键特征。