USP 的肽参考标准含量通常使用 HPLC 测定法与外部标准进行比较,而外部标准的纯度则通过质量平衡法确定。为了探索其他分析方法的使用,USP 生物制品部门进行了一项多实验室合作研究。该研究使用以下方法确定了肽定量的实验室间变异性:HPLC 测定法、定量核磁共振 (qNMR) 光谱法或氨基酸分析 (AAA)。比较了这三种方法对九肽催产素定量的适用性。在本研究中,使用与标准相同的肽散装材料的 HPLC 测定法显示出最低的实验室间变异性。计算变异系数 (%CV) 时不计算与质量平衡标准纯度分配相关的不确定性。质子qNMR法是直接测量肽与内标物的关系,在常见的实验室条件下并不难操作。由于操作简单,分析时间短,qNMR作为肽参考标准值分配的主要方法值得进一步探索。
USP 的肽参考标准含量通常使用 HPLC 测定法与外部标准进行比较,而外部标准的纯度则通过质量平衡法确定。为了探索其他分析方法的使用,USP 生物制品部门进行了一项多实验室合作研究。该研究使用以下方法确定了肽定量的实验室间变异性:HPLC 测定法、定量核磁共振 (qNMR) 光谱法或氨基酸分析 (AAA)。比较了这三种方法对九肽催产素定量的适用性。在本研究中,使用与标准相同的肽散装材料的 HPLC 测定法显示出最低的实验室间变异性。计算变异系数 (%CV) 时不计算与质量平衡标准纯度分配相关的不确定性。质子qNMR法是直接测量肽与内标物的关系,在常见的实验室条件下并不难操作。由于操作简单,分析时间短,qNMR作为肽参考标准值分配的主要方法值得进一步探索。
早期的光谱电化学研究已形成了一个包含多种光谱方法的领域。如今,已有许多关于光谱电化学的综述。例如,Dunsch 在 2011 年发表的工作涵盖了多种光谱电化学技术。3 2013 年,Oberacher 等人发表了一篇关于电化学池中质谱方法的论文。4 Wain 和 O'Connel 在 2017 年撰写了一篇关于表面增强振动光谱电化学的论文。5 同样在 2017 年,Tong 发表了关于核磁共振光谱电化学的研究,重点关注挑战和前景。6 León 和 Mozo 于 2018 年发表的著作详细描述了如何设计光谱电化学池。7 2018 年,Zhai 等人发表了一篇关于电化学池中质谱方法的论文。撰写了一篇综述,其中描述了光谱电化学的最新进展。8 最后,在 Gazor-Ruiz 等人 2019 年的研究中,描述了光谱电化学的最新趋势和挑战。9
1 德国莱比锡马克斯普朗克人类认知与脑科学研究所神经病学系 2 德国莱比锡马克斯普朗克人类认知与脑科学研究所奥托-哈恩认知神经遗传学小组 3 德国于利希研究中心神经科学与医学研究所(INM-7:大脑与行为) 4 德国杜塞尔多夫海因里希海涅大学医学院系统神经科学研究所 5 德国莱比锡大学心理学研究所 6 德国弗莱堡大学心理学研究所、神经心理学 7 德国弗莱堡大学心理学研究所、临床心理学与心理治疗部 8 德国莱比锡马克斯普朗克人类认知与脑科学研究所核磁共振部 9 德国柏林心智与脑学院心脑身体研究所10 德国莱比锡大学认知神经病学诊所,莱比锡,德国 11 德国柏林夏里特医学院
肠道微生物组是位于人体胃肠道内的复杂微生物生态系统,在人体健康中起着至关重要的作用。本期特刊探讨了肠道微生物组代谢组学的最新发展,重点介绍了新方法、分析技术和生物信息学方法,这些方法、分析技术和生物信息学方法使我们能够更深入地了解微生物代谢及其对人体健康的影响。重点领域包括鉴定微生物衍生的代谢物、它们的生化途径及其与宿主系统的相互作用。多组学数据、先进的质谱和核磁共振 (NMR) 技术的整合促进了复杂代谢物谱的表征,揭示了肠道微生物组与各种疾病(如代谢紊乱、癌症和神经退行性疾病)之间以前未知的联系。此外,本期还解决了标准化代谢组学分析的挑战以及基于个体微生物组特征的个性化医疗方法的潜力。
图 1 (a) 描述功能化聚酐合成的示意图。靶向配体 CPTP 首先被乙酰化,然后在标准聚合物合成条件下与共聚物(“P”)发生反应。(b) 通过快速纳米沉淀法合成 NP,形成具有 COOH(即非功能化)或 CPTP(即功能化)端基部分的 NP。Mito-Met 结构示意图,被 NP 封装以进行功效研究,并针对可溶性剂量进行测试。Mito-Met C10(n = 9)用于研究。 (d) 功能化纯化聚合物的 1 H 核磁共振光谱显示 CPTP 苯基 CH 峰(δ 7.70 – 8.00,多重峰)以及聚合物 CPH 苯基 CH 峰(δ 8.02,双峰;δ 8.12,双峰);(e) 傅里叶变换红外光谱 - 功能化纯化聚合物的衰减全反射光谱显示 CPTP α -CH 2 弯曲峰(1450 cm 1)。对照包括仅 CPTP(未显示)和仅非功能化聚合物(显示)
学院的研究达到国际最高标准,我们的硕士和博士学位得到国际认可。我们的教学和研究设备在非洲名列前茅,与世界顶尖大学的设备相比毫不逊色。这些设备包括四台核磁共振波谱仪(包括带固体探针的 600 MHz 波谱仪)、各种色谱设备,包括 GC-MS 和 LC-MS。我们还拥有广泛的无机分析设备,包括单晶和粉末衍射 X 射线设备以及一系列原子和分子光谱仪器。凝聚态物理实验室设备齐全,可在高达 5 特斯拉的施加磁场中,在宽温度范围(1.5 K 至 700 K)内进行磁和电测量,使用无低温测量系统和穆斯堡尔光谱仪。对量子态的研究采用单光子和纠缠光子源、时间相关的高效量子探测器、纳米光子定位和成像设备以及冷原子 (BEC) 陷阱。该学院还拥有非洲第一台3D扫描激光雷达。
摘要:DCIA是祖先细菌复制性解旋酶加载剂,在进化过程中,噬菌体起源的DNAC/I负载器在进化过程中替换。DNAC通过打开六聚体环,帮助解旋酶在DNA上加载,但是DCIA负载的机理仍然未知。我们通过电子显微镜,核磁共振(NMR)光谱和生物化学实验证明,折叠成KH样结构域的DCIA不仅在非典型模式下与单链,而且是双链DNA相互作用。长α-helix 1的某个点突变表明了其在DCIA相互作用中对于模仿单链,双链和分叉DNA的各种DNA底物的相互作用的重要性。其中一些突变也影响了DCIA对解旋酶的负载。我们提出了一个假设,即DCIA可以通过在两个DNA链之间进行插入以稳定它来成为DNA伴侣。这项工作使我们能够提出DCIA与DNA的直接相互作用可以在解旋酶的负载机理中发挥作用。
2。我们的业务CIL总部位于美国马萨诸塞州的图克斯伯里,是全球领先的稳定同位素和稳定同位素标记的化合物的领先生产商。cil是全球医疗企业Otsuka Group的一部分,并在世界各地运营设施。CIL专门研究将稳定(非放射性)同位素与天然丰度分离的过程,然后使用这些高度富集的碳,氢,氮和氧气将生化和有机化合物标记。我们的化学家用稀有,高度有价值的同位素(例如,2H或D,13或D,13C,15N,18O)代替常见原子(例如1H,12c,14n,16o),以便可以使用各种技术(包括质谱(MS)和核磁共振成分(NMR)轻松测量最终产品。CIL的产品用于全球实验室,医疗,政府,学术中心和医疗机构的研究应用。它们也用于商业应用中,例如药品和电子产品,以提高产品质量和寿命。
药物解码的核心是揭示潜在药物化合物的分子结构。这需要确定分子内原子和化学键的排列,这类似于解决一个复杂的难题。解码使研究人员能够理解药物如何与其生物靶标相互作用,从而阐明其作用机制。这种理解对于优化治疗效果和最大限度地减少不良反应至关重要。通过阐明结构-活性关系,药物解码有助于设计具有增强安全性和改善疗效的分子,从而促进药物开发。准确的结构表征对于通过专利保护知识产权至关重要,可以保护制药公司在研发方面的投资。从历史上看,药物解码严重依赖于劳动密集型和耗时的技术,例如X射线晶体学和核磁共振 (NMR) 光谱学。这些方法虽然有效,但往往带来重大挑战,特别是在阐明复杂生物分子或膜结合受体的结构时。此外,它们在提供对配体-受体相互作用等动态过程的实时洞察方面的能力有限[4]。