核糖体生物发生的摘要是癌症的标志,促进了对转化需求改变的适应性,这是肿瘤进展的必要方面的必要方面。在核糖体生物发生和癌症中,复杂的互相互相互动,强调了动态调节,由致癌信号传导路径策划了。研究研究核糖体的多卵形作用,Xtending be y ond蛋白f Actories中,将调节功能包括在mRNA翻译中。dy的核糖体生物发生不仅会阻碍对全球蛋白质产生和增殖的精确控制,还影响了诸如维持干细胞样性质和上皮间质转变等过程,导致癌症进展。干扰核糖体生物发生,尤其是通过RNA Pol I抑制作用,引起以核仁完整性丧失为标志的应力反应以及随后的G1细胞周期停滞或细胞死亡。这些发现表明,癌细胞可能依赖于RNA Pol I转录的增强,从而使核糖体RNA合成成为潜在的治疗脆弱性。<部门进一步探讨了靶向核糖体生物发生脆弱性,这是破坏全球核糖体生产的有前途的策略,为癌症治疗带来了治疗机会。
摘要:视网膜色素变性 (RP) 患者的视锥细胞感光功能丧失严重影响了患者的中心视力、日常视力以及生活质量。视锥细胞的丧失是视杆细胞退化的结果,其方式与 RP 相关的许多基因的致病突变无关。我们探索了这一现象,并提出视杆细胞的丧失会触发由核氧还蛋白样 1 ( NXNL1 ) 基因编码的视杆衍生视锥细胞活力因子 (RdCVF) 表达的减少,从而中断视杆细胞和视锥细胞之间的代谢和氧化还原信号传导。在提供支持这一机制的科学证据后,我们提出了一种恢复这种丢失的信号并防止 RP 动物模型中视锥细胞视力丧失的方法。我们还解释了如何恢复这种信号以防止该疾病动物模型的视锥视力丧失,以及我们计划如何通过使用腺相关病毒载体施用编码营养因子 RdCVF 和硫氧还蛋白酶 RdCVFL 的 NXNL1 产物来应用这种治疗策略。我们详细描述了该转化计划的所有步骤,从药物设计、生产、生物验证,到未来临床试验所需的分析和临床前资格,如果成功,将为这种无法治愈的疾病提供治疗方法。
摘要 针对细菌核糖体的药物在现代医学和兽医实践中被广泛用于治疗细菌感染和防止抗生素耐药性的传播。然而,大多数针对核糖体的药物研究仅限于少数模型生物。因此,我们不知道在模型细菌中观察到的核糖体药物结合位点是否像目前所暗示的那样在细菌中高度保守。在本研究中,我们使用一个简单但强大的计算流程来解决这个问题,该流程过滤掉罕见的变异和测序错误,以识别整个细菌生命树中核糖体药物结合位点的保守变化。这使我们能够评估来自 8,809 种细菌物种的 82 个细菌核糖体药物结合残基的保守性。对于这些残基中的每一个,我们追踪其在 40 多亿年的细菌历史中的进化。与核糖体药物结合残基高度保守的普遍看法相反,我们发现细菌门类在药物结合位点存在广泛的差异。此外,我们还发现,大约 10% 的细菌物种带有核糖体 RNA (rRNA) 替换,而这种替换此前仅在耐药细菌的临床分离株中观察到。总体而言,我们的工作表明,我们传统上将核糖体分为细菌和真核生物类型的方法过于简单且具有误导性,因为它忽略了广泛的谱系特异性变异,这些变异使得某些细菌的药物结合位点与大肠杆菌的差异比大肠杆菌与人类的差异更大。这些发现将对核糖体靶向抗生素的谱系特异性使用产生许多影响,这些抗生素目前被视为细菌蛋白质合成的通用抑制剂。
Target Gene Forward Reverse Bop1 GGTCTCGGAGGAAGAGCACC ACCGCCAAATAGTCCCCTCG Gapdh GGTCCTCAGTGTAGCCCAAG AATGTGTCCGTCGTGGATCT Gemin4 CCTCACAGGTCCACGAAGGG TGCCCACATCCATCACCAGA Its1 TCCATCTGTTCTCCTCTCTCT ATCGGTATTTCGGGTGTGAG Its2 CTGCCTCACCAGTCTTTCTC ACCTCGACCAGAGCAGAT Ecad ACACCGATGGTGAGGGTACACAGG ACACCGATGGTGAGGGTACACAGG Ncad AAAGAGCGCCAAGCCAAGCAGC TGCGGATCGGACTGGGTACTGTG Nop58 acagcagaagcatagcagca cgacagccaggggttcatgg npm1 gcgagagatctcctgcgcgaccat acttcggtgtgtggggagaagcc cascl tgctaaggcagttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttctagtagttagta AAGGAAATGCCCTGAAGCCG Rpl29 GCAGTGAGGGAAGCTTTTCCG CATGTCTGCACGGTAACCCG Rpl8 ACAGAGCTGTTCATCGCAGC ACGATCGTACCCTCAGGCAT Rps24 ACACAGTAACCATCCGGACCA TTTTGGCCAGCTTTTCCCGA Rps28 GATATCCAGAACCCCACCAGC AATGTCAAAGGCCCCGTTCG Rps9 GTCTCGGGCCTGAGTTCGTA CCTGCGCAGTAAAGTGTCGT S100a4 CCTGTCCTGCATTGCCATGAT CCCACTGGCAAACTACACCC Setd4 GGAACTGCGCGTCCTTGTG gtaacaaaaacgccctcgcgca蜗牛Actggtgagaagccattctcct ctggcactggtatctcttcaca utp6 agggcatttgggggggggggggggggggggggggggtgggggggggggggtgggtctgtctctctcagt vim
核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。
1 阿尔伯塔大学物理系,艾伯塔省埃德蒙顿 T6G 2E1,加拿大;munshi1@ualberta.ca (SM);kneupane@ualberta.ca (KN);ileperum@ualberta.ca (SMI);mhalma@ualberta.ca (MTJH) 2 马里兰大学细胞生物学和分子遗传学系,马里兰州帕克分校 20742,美国;jkelly22@umd.edu (JAK);chalpern@terpmail.umd.edu (CFH) 3 霍华德休斯医学研究所珍莉莉亚研究园区,弗吉尼亚州阿什本 20147,美国 4 阿尔伯塔大学李嘉诚病毒学研究所,艾伯塔省埃德蒙顿 T6G 2E1,加拿大* 通讯地址:dinman@umd.edu (JDD);sloerch@ucsc.edu (SL); michael.woodside@ualberta.ca (MTW) † 这些作者对这项工作做出了同等贡献。‡ 当前地址:美国加利福尼亚州圣克鲁斯市加利福尼亚大学化学与生物化学系,邮编 95064。
1。1.3.1 Sterile medications ...................................................................... 14 2.1.3.2无菌测试........................................................................................................................................................................................................1.3.3聚合酶链反应(PCR)............................................................................................................................................................................................................................................... 17 4。1.3.4哥伦比亚的PCR研究..........................................................................................................................................................................................................................目标................................................................................................................................................................................................................................................................................
肽天然产品具有多种有用的应用,例如农药,兽医,药物和生物产品。要发现新的天然产物,将它们操纵以产生模拟生成,并利用这些生物活性化合物用于合成生物学的潜力,有必要开发出强大的方法来表达生物合成基因的表达。无细胞的合成生物学正在作为一种重要的互补方法出现,因为它非常需要在更快的时间范围内表达蛋白质,并且不依赖菌株的遗传障碍性,从而改善了设计构建测试的元素循环的吞吐量。此外,在细胞外产生代谢产物可以克服诸如细胞毒性等问题,这些毒性可能会阻碍抗生素发育等应用。在这篇综述中,我们着重于非核糖体肽合成酶产生的肽天然产物的无细胞产生。非ribsomal肽是由非核糖体肽合酶生物合成的,这些肽是大型“巨型”酶,为异源表达提供了特定的挑战。首先,我们总结了在无细胞系统中表达的NRPS及其相应的肽代谢产物。与此相关,我们讨论了在无细胞蛋白质合成中表达如此大蛋白的需求和挑战,以及为无细胞蛋白质合成而开发的宿主机制,这些蛋白质与未来的非核糖体肽代谢物可能特别相关。然后,可以将无细胞系统的开发用于原型制作,以加快这些复杂途径的工程生物合成的努力。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
基因组编辑技术在生物体中引入了有针对性的染色体修饰,但受限于无法选择性地修改重复的遗传元件。本文我们描述了过滤编辑,这是一种基因组编辑方法,它将第 1 组自剪接内含子嵌入重复的遗传元件中,以构建可以选择性修改的独特遗传地址。我们将含内含子的核糖体引入大肠杆菌基因组,并使用 CRISPR/Cas9 和多重自动基因组工程对这些核糖体进行有针对性的修饰。转录后内含子的自剪接产生无疤痕的 RNA 分子,从而生成一个复杂的靶向组合变体库。我们使用过滤编辑来共同进化 16S rRNA,以调整核糖体的翻译效率,并共同进化 23S rRNA,以分离抗生素抗性核糖体变体,而不会干扰天然翻译。这项工作为设计聚合具有不同化学性质的非生物单体的突变核糖体奠定了基础,并扩大了基因组工程的范围,以实现重复 DNA 序列的精确编辑和进化。