评估了三种流动相改性剂,以确定其对寡核苷酸 LC/MS 分离和灵敏度的影响(图 1)。本研究评估的流动相缓冲液包括碳酸氢铵、醋酸铵和甲酸铵,流动相 A 中的浓度均为 20 mM。醋酸铵和甲酸铵缓冲液用氢氧化铵调节至 pH 8.5,而碳酸氢铵缓冲液未调节 pH。LC/UV 结果表明,14、17、20 和 21 碱基 RNA 样品在 RP 柱上的分离效果相似,20 碱基和 21 碱基 RNA 之间的平均分离度为 R = 1.47。这表明进一步的梯度优化可以实现 n-1 杂质的基线分离(R = 1.5),而生物制药中经常监测这些杂质。
https://doi.org/10.26434/chemrxiv-2024-vcdxr orcid:https://orcid.org/000000-0001-6613-9601 content content content content content contem许可证:CC BY-NC-ND 4.0
摘要 肿瘤形成与大多数复杂的遗传性状一样,是由多种突变的共同作用所驱动。在核苷酸水平上,此类突变称为癌症驱动核苷酸 (CDN)。全套 CDN 是了解和治疗每位癌症患者所必需的,甚至可能是足够的。目前,只有一小部分 CDN 为人所知,因为肿瘤中产生的大多数突变都不是驱动因素。我们现在基于癌症进化在数百万个体中大量重复这一事实发展了 CDN 理论。因此,任何有利突变都应该经常出现,反之,任何不经常出现的突变要么是过客突变,要么是有害突变。在 TCGA 癌症数据库(样本量 n =300–1000)中,点突变可能在 n 名患者中 i 名患者中复发。本研究探讨了广泛的突变特征,以确定仅由中性进化驱动的复发限度 (i *)。由于没有中性突变可以达到 i * =3,因此所有在 i ≥3 处重复的突变都是 CDN。该理论表明,如果每种癌症类型的 n 增加到 100,000,则几乎可以识别所有 CDN。目前,只有不到 10% 的 CDN 被识别。当识别出所有 CDN 时,就可以了解每种情况下肿瘤发生的进化机制,而且重要的是,基因靶向治疗将在治疗上更加有效,并且能够抵御耐药性。
主要的文献参考和用于编译SDS毒物和疾病注册机构(ATSDR)的数据来源 Environmental Protection Agency Federal Insecticide, Fungicide, and Rodenticide Act U.S. Environmental Protection Agency High Production Volume Chemicals Food Research Journal Hazardous Substance Database International Uniform Chemical Information Database (IUCLID) National Institute of Technology and Evaluation (NITE) Australia National Industrial Chemicals Notification and Assessment Scheme (NICNAS) NIOSH (National Institute for Occupational Safety and Health) National Library of Medicine's ChemID Plus (NLM CIP) National Library of Medicine's PubMed数据库(NLM PubMed)美国国家毒理学计划(NTP)新西兰的化学分类和信息数据库(CCID)经济合作与发展环境,健康和安全出版物的经济合作与开发的安全出版物组织高生产力化学批量化学批量的经济合作和发展筛查信息筛查信息数据集
“这项交易使我们能够建立在开发一流和最佳核苷逆转录酶抑制剂的神经退行性和自身免疫性疾病的领导下,包括ALS,PSP和阿尔茨海默氏病。我们很高兴将管道扩展到包括针对各种癌症的强大治疗潜力的这种有效核苷化学治疗的组合。“我们期待将铅化合物推向临床前开发,以靶向DNA破坏维修不足的癌症,例如胰腺和结直肠癌。”
细菌编码了多种防御噬菌体感染的系统。许多流行的抗噬菌体防御系统有一个共同的主题,即使用专门的核苷酸信号作为第二信使来激活下游效应蛋白并抑制病毒传播。在本文中,我们回顾了控制四大抗噬菌体防御系统家族中核苷酸免疫信号的分子机制:CBASS、Pycsar、Thoeris 和 III 型 CRISPR 免疫。对连接噬菌体检测、核苷酸信号合成和下游效应功能的各个步骤的分析揭示了信号传导的共同核心原理,并揭示了用于增强免疫防御的系统特定策略。我们比较了最近发现的噬菌体用来逃避核苷酸免疫信号的机制,并强调了影响宿主-病毒相互作用的趋同策略。最后,我们解释细菌抗噬菌体防御和真核抗病毒免疫之间的进化联系如何定义支配所有生命界核苷酸免疫的基本规则。
本指南包括针对合成或天然衍生的单链或双链 ONT 的建议,这些 ONT 具有天然或经过修饰的主链或核苷结构,可增加或减少蛋白质的表达和/或功能。所包括的寡核苷酸的例子有反义寡核苷酸、小干扰 RNA、microRNA、转移 RNA、诱饵和适体。免疫刺激性寡核苷酸(例如,通过 Toll 样受体起作用的 CpG 基序)和 CBER 监管产品(例如,DNA/RNA 疫苗、病毒递送的 ONT、信使 RNA 和用于基因编辑的 RNA)不包括在内。如果寡核苷酸本身属于本指南的范围,则包括与其他类型分子(例如,糖类、脂质、肽、抗体)结合的寡核苷酸。
。CC-BY 4.0 国际许可下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 10 月 22 日发布。;https://doi.org/10.1101/2024.10.08.617237 doi:bioRxiv 预印本