GEENIE 递送平台是一种专有的带负电荷的工程蛋白分子,它使用螺旋机制通过细胞膜转运。它可以将其有效载荷(包括 CRISPR-Cas9、gRNA 和 DNA 等基因组编辑化合物)直接递送到目标细胞核而不会损害细胞。它可以被编程为识别细胞类型受体,实现对 HER2+ 表达细胞和胶质母细胞瘤等目标的选择性递送。GEENIE 可以穿透哺乳动物细胞的膜(90% 的细胞在一到三个小时内吸收)、耐药细菌、酵母和植物细胞。到目前为止,体外和体内小鼠研究表明,其新颖的进入机制导致无毒性和极低的免疫原性。该平台坚固耐用且可扩展。这种简单的重组蛋白的生产成本不到 1 美元/微克,而病毒递送装置(特别是在基因组医学中)的估计成本为 400 美元/微克。 “在不损害细胞和引发不良免疫反应的情况下,将用于癌症和基因治疗的药物(无论是基因、RNA 还是 CRISPR)输送到细胞膜上仍然是制药行业面临的一个复杂障碍,”在印度和爱尔兰设有办事处的 CyGenica Limited 创始人兼首席执行官 Nusrat Sanghamitra 说道。“我们开创性的 GEENIE 技术是一种分子钻头,它充当纳米机器,穿过细胞膜,以高效、有针对性的方式运送大量货物,没有任何毒性,免疫原性最小。这将彻底改变药物输送方式,并带来更好的患者治疗效果。”
在增加抗生素释放性和诸如Covid-19之类的传染病的传播时期,对与抗生素耐药性相关的基因进行分类非常重要。随着Nat-Ural语言处理的发展,基于变压器的语言模型,许多学习Nu-Cleotide序列特征的语言模型也出现了。这些模型在分类核苷酸序列的各种特征方面表现出良好的性能。在对核苷酸序列进行分类时,不仅是序列本身,而且还使用各种背景知识。在这项研究中,我们不仅使用基于核苷酸序列的语言模型,还使用基于PubMed文章的文本语言模型来反映模型中更多的生物背景知识。我们采用了一种基于抗生素抗性基因的各种数据库的核苷酸语言模型和文本语言模型的方法。我们还提出了一种基于LLM的增强技术,以补充数据和合奏方法,以有效地结合这两个模型。我们还提出了用于评估模型的基准。我们的方法比耐药性类别预测中的核苷酸序列语言模型更好。
和RNA仅由四个不同的核苷酸组成。所有核苷酸都有一个共同的结构:由磷酸盐键连接到戊糖(五碳糖分子)的磷酸基团,而磷酸盐又与有机碱有关。在RNA中,五肠结是核糖;在DNA中,它是脱氧核糖。 DNA和RNA核苷酸的唯一其他差异是,这两个有机碱基之一之间的一个不同。 在DNA和RNA中都发现了碱,鸟嘌呤和胞嘧啶。胸骨仅在DNA中发现,尿嘧啶仅在RNA中发现。 基础通常分别缩写为A,G,C,T和U。 为方便起见,当将长核苷酸序列写出时,也会使用单个字母。在RNA中,五肠结是核糖;在DNA中,它是脱氧核糖。DNA和RNA核苷酸的唯一其他差异是,这两个有机碱基之一之间的一个不同。在DNA和RNA中都发现了碱,鸟嘌呤和胞嘧啶。胸骨仅在DNA中发现,尿嘧啶仅在RNA中发现。基础通常分别缩写为A,G,C,T和U。为方便起见,当将长核苷酸序列写出时,也会使用单个字母。
在遗传学中,突变有两种类型(一个核苷酸被另一个核苷酸替换)。转换是将嘌呤核苷酸(两个环)变为另一个嘌呤(A ↔ G),或将嘧啶核苷酸(一个环)变为另一个嘧啶(C ↔ T)。所有其他用嘌呤取代嘧啶或用嘧啶取代嘌呤的突变称为颠换。尽管理论上只有四种可能的转换和八种可能的颠换,但实际上转换比颠换更有可能,因为用一个单环结构取代另一个单环结构比用双环取代单环更有可能。此外,转换不太可能导致氨基酸取代(由于碱基对摆动),因此更有可能在群体中以静默取代的形式持续存在。
循环条件说明 • 重组 Taq DNA 聚合酶是大多数 PCR 应用的首选酶。• 酶的半衰期在 95°C 下为 >40 分钟。• Taq DNA 聚合酶在 PCR 中的错误率为每循环每核苷酸 2.2x10 -5 个错误;准确度(错误率的倒数)即发生错误之前插入的正确核苷酸的平均数量为 4.5x10 -4(根据 中描述的改进方法确定)。• Taq DNA 聚合酶接受修饰核苷酸(例如生物素、地高辛、荧光标记的核苷酸)作为 DNA 合成的底物。• PCR 循环数取决于反应混合物中的模板 DNA 量和 PCR 产物的预期产量。对于大多数 PCR 反应,25-35 个循环通常已足够。少量起始模板可能需要 40 个循环。防止污染的指南
摘要 背景 癌细胞实现免疫逃逸的一个重要机制是将细胞外腺苷释放到其微环境中。腺苷激活免疫细胞上的腺苷 A 2A 和 A 2B 受体,这是最强的免疫抑制介质之一。此外,细胞外腺苷促进血管生成、肿瘤细胞增殖和转移。癌细胞上调外核苷酸酶,最重要的是 CD39 和 CD73,它们催化细胞外 ATP 水解为 AMP(CD39)并进一步水解为腺苷(CD73)。因此,抑制 CD39 有望成为癌症(免疫)治疗的有效策略。然而,目前还没有适合 CD39 的小分子抑制剂。我们的目标是识别类药物 CD39 抑制剂并对其进行体外评估。方法我们通过筛选一组自行编制的、已获批准的、大多是 ATP 竞争性的人类 CD39 蛋白激酶抑制剂,采取了一种再利用方法。在各种正交试验和酶制剂以及人类免疫细胞和癌细胞中,进一步表征和评估了最佳命中化合物。结果酪氨酸激酶抑制剂色瑞替尼是一种用于治疗间变性淋巴瘤激酶 (ALK) 阳性转移性非小细胞肺癌的强效抗癌药物,被发现能强烈抑制 CD39,并表现出相对于其他外核苷酸酶的选择性。该药物表现出一种非竞争性、变构的 CD39 抑制机制,在低微摩尔范围内表现出效力,这与底物 (ATP) 浓度无关。我们可以证明色瑞替尼以剂量依赖性方式抑制外周血单核细胞中的 ATP 去磷酸化,导致 ATP 浓度显著增加并阻止 ATP 形成腺苷。重要的是,色瑞替尼 (1-10 µM) 显著抑制了 CD39 天然表达高的三阴性乳腺癌和黑色素瘤细胞中的 ATP 水解。结论 CD39 抑制可能有助于强效抗癌药物色瑞替尼发挥作用。色瑞替尼是一种新型 CD39 抑制剂,具有高代谢稳定性和优化的物理化学性质;据我们所知,它是第一个可穿透脑的 CD39 抑制剂。我们的发现将为 (i) 开发更有效、更平衡的双重 CD39/ALK 抑制剂和 (ii) 优化色瑞替尼支架与 CD39 的相互作用奠定基础,以获得强效且选择性的类药物 CD39 抑制剂,以供未来的体内研究。
欧洲CVDPV2分离株的测序鉴定出与Sabin 2疫苗菌株的43-50个核苷酸的VP1衣壳蛋白编码区的差异。总体而言,在所有欧洲分离株中都发现了这些核苷酸差异中的38个。它们具有13个核苷酸的常见差异,与最接近的NIE-ZAS-1分离株发生了变化,这些分离株先前在阿尔及利亚,几内亚和马里被检测到。在这些欧洲国家中检测到的病毒群体呈现出单个谱系(即它们表现出核苷酸变化的共同模式,这使得它们与彼此之间的关系更紧密,而不是与Nie-Zas-1出现中的任何其他非欧洲分离物更紧密相关);但是,集群中存在一系列遗传差异,同一国家不同地点的同时分离彼此之间表现出很大的差异(4)。
