时,并且学术论文揭示了基因交换在自然界中发生,而这些物种是微生物,是微生物源自供体,宿主和表达质粒的微生物,用于生产的微生物中的DNA的质粒属于这些物种。 1)在同行评审论文中出版2)由多位专家(例如学术社会的职位论文)所证明的论文。
ETEST ® 是一种手动定量技术,用于测定非苛养革兰氏阴性和革兰氏阳性需氧菌以及苛养菌的抗菌敏感性。该系统包含预定义的抗生素梯度,用于确定不同抗菌剂在琼脂培养基上过夜培养后对微生物的最低抑菌浓度 (MIC,以 μg/mL 为单位)。使用指征 ETEST ® IP 可用于测定亚胺培南对下列微生物的 MIC: • 需氧菌: ◦ 革兰氏阴性需氧菌:肠杆菌、假单胞菌、不动杆菌 ◦ 革兰氏阳性需氧菌:肠球菌 • 肺炎链球菌 • 厌氧菌: ◦ 革兰氏阴性厌氧菌:拟杆菌、梭杆菌 ◦ 革兰氏阳性厌氧菌:梭状芽孢杆菌、无芽孢革兰氏阳性杆菌、革兰氏阳性球菌
过去 30 年来,耐甲氧西林金黄色葡萄球菌 (MRSA)、耐万古霉素肠球菌 (VRE) 和某些革兰氏阴性杆菌在美国医院的患病率不断上升,对患者安全具有重要影响。人们对这些耐多药菌 (MDRO) 感到担忧,因为治疗这些感染患者的选择通常极其有限,并且 MDRO 感染与住院时间延长、费用增加和死亡率增加有关。艰难梭菌感染 (CDI) 也具有许多这些特征。医疗保健感染控制实践咨询委员会 (HICPAC) 已批准了控制 MDRO 的指南。1 这些指南可在 https://www.cdc.gov/infectioncontrol/guidelines/MDRO/index.html 上找到。NHSN 的 MDRO 和艰难梭菌模块提供了一种工具,可帮助机构满足指南中概述的一些标准。此外,本模块中使用的许多指标与“医疗环境中耐多药菌指标建议:SHEA/HICPAC 立场文件”2 一致。艰难梭菌 (C. difficile) 可导致一系列艰难梭菌感染 (CDI),包括无并发症的腹泻、伪膜性结肠炎和中毒性巨结肠,在某些情况下会导致败血症和死亡。尽管 CDI 代表了当前 CDC 对 HAI 定义中胃肠道感染的一个子集,但应纳入 CDI 3 的特定标准定义,以更全面地了解艰难梭菌在医疗机构中的传播方式。如 HICPAC 指南 1 所述,这些 MDRO 和艰难梭菌病原体可能需要专门监测,以评估是否需要加强感染控制力度,以减少这些菌落和相关感染的发生。本模块的目标是为机构提供一种机制来报告和分析数据,让感染预防专业人员了解有针对性的预防措施的效果。本模块包含 MDRO 和 C . difficile 的两个核心报告选项 - 实验室识别 (LabID) 事件报告和感染监测报告。这些报告选项作为两种独立的报告方法 - 一种侧重于基于实验室的报告,另一种侧重于基于感染标准的监测报告。报告选项总结在表 1 中。参与者可以选择其中一个或两个报告选项,也可以选择参与表 1 中描述的任何一种补充监测方法。有关这两个选项之间的主要区别,请参阅附录 3:区分 LabID 事件和感染监测。
Sargururia,博士,博士; Aiemaré,博士; Joshua C. Bis,博士;艾达·苏拉卡(Ida Surakka),博士; 7月,MSC; Piirre Joly,博士; Maria J. Knol,MSC; Ruiqi Wang,MSC; Yang,博士学位; Claudia L. Satzabal博士;亚历山大·祈祷(Alexander Prayons),理学硕士; Alitt Mera,PD; Vincent Bouteloup博士; Phah Phuah,医学博士,MMS; Cornelia M. Van,Phdn,PhD; Crucha Carlos博士; Carole Dufout,博士;医学博士Genevièves;奥斯卡·洛佩兹(Oscar L. Lopez),医学博士; Bruce M. Psaly,医学博士,博士;医学博士克里斯托弗(Christopte); Philips Auouyel,医学博士; H. Adams,医学博士; Hulig Jaci-Gada,PD; Arfan Ikram,医学博士,PD; Vilmundur Gudnason,医学博士,PD; Lili,博士; Bendik S. Winsvold,医学博士; Kristian Heem,医学博士;保罗·M·马修斯(Paul M. Matthews),医学博士,德菲尔(Dphil); W. Longst,医学博士;医学博士Sushedri; Leore J. Launer博士;医学博士Debette,医学博士,博士
这项研究由伊拉克农业部植物保护局开展,旨在了解在小麦品种 IPA-99 中添加植物生长促进微生物 (PGPM)(巴西安氏螺旋菌、梭形赖氨酸芽孢杆菌、鹰嘴豆根瘤菌 CP-93、荧光假单胞菌、巨大芽孢杆菌和哈茨木霉)作为生物肥料与 25% 矿物肥料的效果。实验室研究包括分离和鉴定赖氨酸芽孢杆菌,该菌在体外与这些微生物之间没有拮抗作用。研究结果表明,T2处理在大多数性状中均表现优异,包括分蘖数(4.00 分蘖株 -1 )、穗长(10.50 cm)、每穗小穗数(19.50 小穗穗 -1 )、百粒重(3.50 g)和每穗粒数(35.43 粒穗 -1 )。该处理在籽粒氮含量(4.870%)、磷含量(1.943%)、钾含量(4.156%)和蛋白质含量(30.43%)等方面也表现出色。除生物产量特性(处理T5(62.30 g株 -1 )优于处理T1(23.10%))和收获指数(处理T2)外,T2优于所有处理。但是,它们与处理T2之间并无显著差异。关键词:小麦、梭形芽孢杆菌、生物肥料、PGPM、生长和产量性状 主要发现:梭形芽孢杆菌作为生物肥料处理,结合 25% 的推荐矿物肥料剂量,显著提高了小麦的生长和产量参数。此外,生物肥料还增加了小麦植株中 NPK 的利用率。
虽然临床症状和接触史可以缩小感染性腹泻的可能病因范围,但以前可能需要进行多次粪便检查和医疗访问才能确定病因。感染性腹泻检测组 (IDP) 是一种新的粪便检测,结合了粪便培养、虫卵与寄生虫 (O&P) 以及艰难梭菌。IDP 可在单个样本中检测一组标准化的 14 种病毒、细菌和原生动物病原体(表 1:每个实验室的感染性腹泻检测组 [IDP] 中包含的病原体)。IDP 不仅比以前的方法检测出更广泛的病原体,而且更快、更灵敏。它在功能上取代了粪便培养和 O&P;但是,独立的艰难梭菌测试仍然可用。考虑到 IDP 是一种昂贵的测试,本指南旨在描述 IDP 的最合适用途。由于对 CDI 的理解有所进步,该指南还描述了艰难梭菌测试的使用和解释。
旨在与 BIOFIRE FILMARRAY 系统配合使用的基于酸的体外诊断测试。BIOFIRE GI 面板能够同时检测和识别来自 Cary Blair 传输介质中的多种细菌、病毒和寄生虫的核酸,这些样本来自有胃肠道感染迹象和/或症状的个体。使用 BIOFIRE GI 面板可识别以下细菌(包括几种致泻大肠杆菌/志贺氏菌病原体)、寄生虫和病毒:• 弯曲杆菌(空肠弯曲菌/大肠杆菌/乌普萨拉弯曲菌)• 艰难梭菌(艰难梭菌)毒素 A/B • 志贺氏邻单胞菌 • 沙门氏菌 • 弧菌(副溶血性弧菌/创伤性弧菌/霍乱弧菌),包括对霍乱弧菌的特定识别 • 小肠结肠炎耶尔森氏菌 • 肠聚集性大肠杆菌 (EAEC) • 肠致病性大肠杆菌 (EPEC)
摘要 沙雷氏菌属是肠杆菌科的一种菌种,存在于多种生态环境中。近年来,沙雷氏菌已成为促进植物生长和防御植物病虫害的多方面贡献者。本综述探讨了沙雷氏菌诱导植物生长和缓解非生物和生物胁迫的机制。沙雷氏菌与植物生态系统的无缝整合使沙雷氏菌能够产生群体感应分子 N-酰基高丝氨酸内酯 (AHL),促进植物组织的定植并利用植物分泌物中的营养。这种错综复杂的通讯网络使沙雷氏菌能够产生植物激素并分解土壤中的必需营养物质供植物吸收。面对生态竞争对手,许多沙雷氏菌菌株表现出非凡的适应性,产生多种水解酶和抗菌、抗真菌或杀虫化合物,有效控制有害细菌、真菌和害虫。此外,有益的沙雷氏菌菌株还分别使用诱导系统抗性 (ISR) 和耐受性 (IST) 来缓解生物和非生物胁迫。沙雷氏菌的各种农业应用包括直接使用细菌细胞进行种子包衣、叶面喷洒和土壤接种,或将其生物活性化合物单独或与其他材料结合应用于植物的各个部位。这些努力旨在增强植物健康、抑制疾病和控制害虫种群。尽管应用前景广阔,但有报道称植物和动物具有机会性致病性。因此,应考虑几种安全方法和使用毒力因子突变菌株。沙雷氏菌在农业中的应用趋势预计将持续下去。
Methods This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two来自Bicêtre医院(法国克里姆林 - 比卡特)的可菌素敏感分离株。通过全基因组测序,抗菌敏感性测试和生化测试来表征分离株。也包括来自GenBank(n = 103)的完整基因组进行基因组分析,包括系统发育和核心基因组和抗性的测定。不同物种或亚种之间的遗传距离。通过将遗传分析与脂质A上的质谱分析相结合。