1. 引言/ Uvod 随着空海一体战办公室(ASBO)提出“空海一体战”(ASB)[1-2]和“全球公域介入与机动联合概念(JAM-GC)”[3-4]两个新战略概念,为应对反介入/区域拒止(A2/AD)的潜在威胁(图1),美国海军尤为强调跨域纵深打击目标的能力,在实施跨域作战时覆盖整个天-空-海-陆-网空间,可为联合部队提供最大的作战优势(图2)。美国海军上述作战需求给海军舰艇设计研究带来了许多新的挑战。为保持前沿存在、前沿部署和前沿作战,美国海军按照武器系统发展原则,满足新作战任务对系统完整性的要求。美国海军海上系统司令部(NAVSEA)发布报告称,“随着国家安全环境越来越复杂、挑战性越来越大,未来一体化舰船设计规划已成为必然”。因此,美国海军将继续发展以“模型驱动、学科集成、系统集成”为特征的新型舰船概念,提升海军舰船系统发展水平,获得整体作战效能。
飞机概念设计 (ACD) 在提高当今复杂的系统设计所需的保真度水平的道路上面临着新的挑战。早期设计阶段的挑战是使用通常应用于后期开发阶段的更高保真度方法。因此,需要集成模型和模拟以增强分析能力,同时保持精简、透明和低成本(任务时间和劳动力方面的低工作量)的工作流程。在本文中,介绍了使用面向对象的 KBE 方法实现基于不完整数据的仿真模型的早期集成。在此之前,对多域系统的建模和仿真方法进行了仔细的研究,并检查了它们在 ACD 阶段的使用效率和结果准确性。提出了一种实现这一目标的中心参数信息模型方法。通过扩展使用 XML、XSD 和 XSLT,可以从此数据集转换特定领域的架构模型,支持直接 CAD 领域集成和自动模型创建。将系统建模为图形网络是概念设计阶段统一建模的一种简单方法。基于这一理论,展示了不同建模方法(如依赖结构矩阵 (DSM)、MDDSM 或渠道代理网络)的相似性。使用面向对象编程,所有这些方面以及更多方面,例如故障树分析 (FTA)
主要研究内容如下。开发了内部定型程序AMD-Sizing,以准确预测从起飞到着陆的任务剖面。为了验证定型过程的准确性,用AMD-Sizing程序分析了现有飞机庞巴迪Dash-8的任务剖面,并与AAA商用定型软件的结果进行了比较。比较结果表明,在整个任务剖面中,系统重量和性能的估计具有极好的一致性。与主要基于低保真表查找和由统计数据构成的经验模型的典型定型过程不同,AMD-Sizing的一大优势在于它可以集成更高保真度的子学科分析,包括CFD(计算流体动力学)或CSD(计算结构动力学),以提高概念设计的准确性和可靠性。目前,AMD-Sizing得到了进一步改进,用高保真CFD分析或精度较低的线性势流求解器取代了低保真气动分析。此外,通过集成数学设计优化算法,当前的尺寸程序也得到了增强,成为更全面的概念设计框架。可以通过引入与形状相关的设计参数来参数化表面几何形状,并通过参数关系自动修改。因此,可以通过正式的设计优化过程找到飞机或任务轮廓的最佳配置。要充分利用
在概念设计期间,预测抖振起始边界时会出现一个问题。由于有效载荷航程和巡航高度能力面临的压力,改善抖振起始边界往往非常重要。它是确定运输机低音速和跨音速性能的主要限制之一。抖振是一种由气流分离或冲击波振荡引起的高频不稳定性,可看作是一种随机受迫振动。根据攻角和自由流速度,气流分离可产生气动激励。后缘的分离边界层会产生湍流尾流,如果此尾流撞击水平尾翼面等,抖振就会影响飞机结构的尾部。由于抖振会限制设计升力系数,因此可能会限制飞机的最大升阻比和运行上限。这意味着,如果没有准确考虑抖振,设计师进行的性能计算可能与飞机的实际性能不符,因为 Breguet 射程方程和耐久性方程都是升力和阻力特性的函数。简而言之,本论文研究的主要动机是创建一种更先进但快速的跨音速抖振起始预测工具,以便在概念设计阶段实现更大的设计自由度。这意味着该工具应该比传统工具更快,它应该可靠并且能够处理非常规配置。此外,它应该以模块化方式构建,以便于使用、更改和更换工具的部件。
可变马赫数爬升预测中使用的诱导阻力系数 [Eq (7.34e)] 阻力系数 (Para.5.1) 升力引起的阻力系数(诱导) [Eq (6.12a)] 零升力下的波阻力系数 [Eq (6.17a)] 零升力阻力系数 [Eq (6.17b)] 波阻力系数函数 [Eq (6.17b)] 爬升条件下的有效零升力阻力系数 [Eq (6.15)] 受阻着陆时的有效零升力阻力系数 [Eq (6.16b)] 升力系数 (Para.5.1) 进近升力系数 (Para.6.2.4) 巡航升力系数 (Para.6.2.4) 大迎角时小展弦比机翼的最大升力系数 (Para.6.2.5.2 和表 6.2) 低速时小展弦比机翼的最大升力系数 (第6.2.5.3 和表 6.2) 机动时可用的最大升力系数 (第6.2.4) 最大升力系数 (第6.2.4) 最小总阻力时的升力系数 [Eq (7.14b)] 起飞脱粘状态下的升力系数 (第6.2.4) 俯仰力矩 c6 系数 (第5.1)
15.补充说明由船舶结构委员会赞助。由其成员机构共同资助。16.摘要 报告中提出了一种新的船体结构概念,并研究了其应用于大型海军舰艇建造的可行性。在这个概念中,船壳和甲板由混合钢复合板组成。面板由浅弯曲钢膜组成,复合材料填充膜的凹面。对面板的几种变体进行的 FE 分析表明,在折痕面板中添加复合材料可提高屈曲能力;但为了获得明显的改善,需要高性能复合材料。折痕面板会显著改变其行为。抗弯强度低于平板板,但如果外壳厚度大幅减少,抗弯强度仍保持相对恒定,而传统平板板的抗弯强度会随着板厚的减少而急剧下降。报告的结论是,所提出的混合船体概念在技术上是可行的,但由于需要先进材料,可能导致船体成本非常高。17.关键词 18.分发声明 分发不受限制,可从以下地址获得:国家技术信息服务斯普林菲尔德,弗吉尼亚州 22161 (703) 487-4650
作者特此授予瑞典皇家理工学院 (KTH) 永久且免版税的许可,以完整形式发布本作品并将其用于 KTH 当前和未来的所有出版用途。此许可包括无限制的权利,可以以任何形式重印本作品、将其转移到任何电子媒体、制作缩微胶片并将其输入到摘要和索引服务中。它还包括授权他人摘录部分文本或插图以供其他出版物承认的权利,但那些被标识为摘录自先前受版权保护的作品的部分除外。本作品的所有权和版权归作者所有,作者保留使用从本作品中提取的任何和所有材料用于任何类型的未来出版物的权利,以及以完整形式复制本作品以供个人非商业用途的权利。
20 世纪 60 年代末,波音公司获得了一份为阿波罗 15、16 和 17 号任务建造月球车的合同。工程师们开发了一种简单的轻型月球车,可以存放在月球探测舱 (LEM) 的外部。这些车辆重 464 磅。可以承载总重达 1600 磅的机组人员、便携式生命支持系统、通讯设备、科学设备、摄影器材和月球样本。月球车 (LRV) 由两个 36 伏电池供电,驱动位于每个车轮上的四个 ¼ 马力电动机,运行范围为 57 英里。然而,由于宇航员便携式生命支持系统的限制,LRV 被限制在距离 LEM 6 英里的半径范围内。图 2.1 显示了月球表面的 LRV。
随着时间的推移,飞机设计已从传统设计方法演变为利用多变量设计优化的更现代的基于计算机的设计方法。近年来,飞机概念和配置变得更加多样化和复杂,从而使许多综合软件包超出了其能力范围。此外,许多飞机设计软件示例都侧重于对一个特定概念的分析,因此需要为每个概念提供单独的软件包。这可能会导致比较概念和配置的复杂性,因为性能差异可能源于使用不同的预测工具集。本文介绍了克兰菲尔德大学飞机设计小组为解决这些问题而开发的 GENUS 飞机设计框架。本文回顾了现有的飞机设计方法,并描述了它们在开发和应用中面临的挑战。随后,介绍了 GENUS 飞机设计环境,以及程序架构背后的理论背景和实际推理。特别关注所涉及的编程、方法选择和优化技术。随后,介绍了在框架中实施的开发方法的一些应用,以说明该方法的多样性。简要介绍了三类特殊的飞机设计概念。关键词
scielo.br › jatm PDF 作者:C Liangliang · 2016 · 被引用次数:8 — 作者:C Liangliang · 2016 被引用次数:8 analysis process, which can provide technical support to the ... the stealth characteristics of the aircraft, the radar detection.