The conventional interpretation of electron orbitals as probability clouds has been central to quantum mechanics. However, this paper proposes a novel framework in which electron orbitals are holographic planes defined by the fine-structure constant and relativistic principles. This holographic interpretation provides a deterministic yet flexible description of quantum behaviour, linking the electron's unique spacetime geometry to its interaction with the electromagnetic field. The model explains quantized energy levels, spectral line structures, and interference phenomena while aligning with relativity. The implications for quantum mechanics and the unification of physics are profound, offering testable predictions.
机器学习应用于地球观察(EO)数据,以得出用于表征,理解和保护自然资源的数据集,从而促进了国际协定的进步。但是,派生的数据集包含固有的不确定性,需要可靠地量化以避免向下流后果。应对报告不确定性的需求的增加,我们将注意力集中在EO领域内的共形预测的希望。共形预测是一种不确定性定量(UQ)方法,该方法具有统计有效和信息性的预测区域,同时同时是计算高效,模型无关的,无分布的,并且可以在不需要访问下面的模型和训练数据集的情况下以HOC的方式应用。我们评估了EO-MAIG中不确定性定量的当前状态,发现只有21%的审查数据集融合了一定程度的不确定性信息,并且不可靠的方法普遍存在。接下来,我们介绍了Google Earth Engine本地模块,这些模块可以集成到现有的预测建模工作流中,并通过将它们应用于跨越大陆的数据集中到全球尺度,回归和分类任务,以传统学习和深度学习工作来证明这些工具的多功能性,效率和可扩展性。我们预计,易于使用的保形预测因子(例如这里提供的预测)的可用性会增加
在Böcherer,Steiner,Schulte [24]中提出的概率振幅成形(PAS)是一种实用结构,用于在高阶星座上与现成的前进误差校正(FEC)代码相结合的高阶星座。PA由一个分布匹配器(DM)组成,该匹配器(DM)在信号点幅度上施加了分布,然后进行系统的FEC编码,并保留幅度分配。fec编码会生成其他奇偶校验位,该位选择信号点的符号。在接收器处,FEC解码之后是逆DM。PA很快产生了很大的工业影响,尤其是在光纤通信中。该专着详细介绍了导致PAS发明的实际构想,并提供了对PAS架构的信息理论评估。由于将其分为成型层和FEC层,因此PAS的理论分析需要新工具。在塑形层上,分析了有限长度DMS的成本损失和费率损失。在FEC层上,得出了可实现的FEC速率。使用不匹配的解码,研究了可实现的速率,以解码实际重要的指标。结合了发现,这表明具有线性代码的PA在一类离散输入通道上可以实现容量。讨论了未来研究的开放问题。
我们为大脑和行为提供了一个通用的理论框架,该框架在进化和计算上都是可行的。我们抽象模型中的大脑是一个由节点和边组成的网络。尽管它与标准神经网络模型有一些相似之处,但正如我们所展示的,它们之间存在一些显著差异。我们网络中的节点和边都有权重和激活级别。它们充当概率传感器,使用一组相对简单的规则来确定激活级别和权重如何受到输入的影响、生成输出并相互影响。我们表明,这些简单的规则可以实现一个学习过程,使网络能够表示越来越复杂的知识,同时充当一个计算设备,促进规划、决策和行为的执行。通过指定网络的先天(遗传)组件,我们展示了进化如何赋予网络初始的自适应规则和目标,然后通过学习进行丰富。我们展示了网络结构的发展(决定大脑能做什么以及做得好不好)如何受到影响数据输入分布的机制和决定学习参数的机制(用于节点和边运行的程序)之间共同进化的协调性的重要影响。最后,我们考虑该模型如何解释学习和决策领域的各种发现,它如何解决一些具有挑战性的思维和行为问题,例如与设定目标和自我控制有关的问题,以及它如何帮助理解一些认知障碍。
概率分水岭是一种应用于无向图的半监督学习算法。给定一组带标签的节点(种子),它定义了一个吉布斯概率分布,该分布覆盖所有可能断开种子的生成森林。它计算每个节点采样一个将某个种子与所考虑节点连接起来的森林的概率。我们提出了“有向概率分水岭”,这是概率分水岭算法对有向图的扩展。在概率分水岭的基础上,我们应用有向图的矩阵树定理,并定义一个吉布斯概率分布,该分布覆盖所有以种子为根的传入有向森林。与无向情况类似,这等同于有向随机游走。此外,我们表明,在吉布斯分布具有无限低温度的极限情况下,有向概率分水岭的标记等于由最小成本的传入有向森林引起的标记。最后,为了说明,我们将所提出的方法与其他有向图半监督分割方法的经验性能进行了比较。
描述 为以下任务而开发。 1) 计算概率密度函数、累积分布函数、随机生成,并估计十一个混合模型的参数。 2) 使用十二种方法对二参数威布尔分布的参数进行点估计,使用九种方法对三参数威布尔分布的参数进行点估计。 3) 三参数威布尔分布的贝叶斯推断。 4) 使用近似最大似然、期望最大化和最大似然三种方法估计适合分组数据的三参数 Birnbaum-Saunders、广义指数和威布尔分布的参数。 5) 通过 EM 算法估计适合分组数据的伽马、对数正态和威布尔混合模型的参数, 6) 估计适合高度 - 直径观测的非线性高度曲线的参数, 7) 估计参数,计算概率密度函数、累积分布函数,并从 Venturini 等人提出的伽马形混合模型生成实现。 (2008) < doi:10.1214/07-AOAS156 >,8)贝叶斯推断,计算概率密度函数、累积分布函数,并从单变量和双变量 Johnson SB 分布生成实现,9)当误差项遵循偏斜 t 分布时进行稳健多元线性回归分析,10)使用最大似然法估计适合分组数据的给定分布的参数,11)通过贝叶斯、矩法、条件最大似然法和二百分位数法估计 Johnson SB 分布的参数。
开发了铁电纤锌矿氮化铝钪 (Al 1 − x Sc x N) 固溶体的 Landau – Devonshire 热力学能量密度函数。该函数使用现有的实验和理论数据进行参数化,能够准确再现块体和薄膜的成分相关铁电特性,例如自发极化、介电常数和压电常数。发现纤锌矿结构保持铁电性的最大 Sc 浓度为 61 at. %。对 Al 1 − x Sc x N 薄膜的详细分析表明,铁电相变和特性对基底应变不敏感。这项研究为新型铁电纤锌矿固溶体的定量建模奠定了基础。