概率分水岭是一种应用于无向图的半监督学习算法。给定一组带标签的节点(种子),它定义了一个吉布斯概率分布,该分布覆盖所有可能断开种子的生成森林。它计算每个节点采样一个将某个种子与所考虑节点连接起来的森林的概率。我们提出了“有向概率分水岭”,这是概率分水岭算法对有向图的扩展。在概率分水岭的基础上,我们应用有向图的矩阵树定理,并定义一个吉布斯概率分布,该分布覆盖所有以种子为根的传入有向森林。与无向情况类似,这等同于有向随机游走。此外,我们表明,在吉布斯分布具有无限低温度的极限情况下,有向概率分水岭的标记等于由最小成本的传入有向森林引起的标记。最后,为了说明,我们将所提出的方法与其他有向图半监督分割方法的经验性能进行了比较。