描述:经典理论无法解释重要的物理现象,这导致了我们的思维方式发生了革命性的、前所未有的变化,进而导致了 20 世纪上半叶量子力学的发展。事实证明,量子力学定律导致了一种新的概率理论(量子概率),它是经典概率理论的非交换推广。长期以来,人们一直认为信息处理和计算仅仅是数学构造,因此与自然和量子力学定律无关。在 20 世纪 80 年代,人们发现这一假设是不正确的,其影响是深远的。量子力学在通信和计算中的引入产生了新的范式(量子信息)以及计算、通信和学习领域的一些意想不到的结果。例如,现在已经发现了用于分解合数的量子算法(Shor 算法 1994)。相反,目前尚无已知的实用(即多项式时间)经典解决方案。此外,最近有人提出了用于人类认知的量子概率模型,以解释民意调查中的问题顺序效应和违反理性决策理论的行为。本课程是对这一领域的介绍。本课程的目的是发展量子计算和信息的关键概念,并提供动手量子编程技能(Qiskit 平台)。线性代数的基本工作知识是先决条件,但不需要量子力学、经典计算或信息理论的先验知识。工程、计算机科学、系统理论、物理科学和数学等所有领域的研究生都应该对这本材料感兴趣。
本研究解决了雇主在筛选大量工作职位简历方面面临的困难。我们旨在通过自动化恢复筛选过程来确保对候选人的公平评估,降低偏见并提高候选评估过程的效率。拟议的系统使用NLP技术从简历中提取相关能力,重点关注特定职位所需的关键技能。使用了为职位所采用的能力集。进行了123个工作职位的案例研究。jaccard的相似性和余弦相似性度量。由于余弦相似性着重于单词频率,Jaccard相似性度量的结果与研究目的更加一致。提取的能力与使用JACCARD相似性相关的各种职位相关的预定义技能匹配。此方法通过分析与所需能力有关的简历中的存在或不存在特定单词来分配候选人的相似性分数。这个基于NLP的系统提供了巨大的好处,例如节省时间和其他资源,增加候选人选择方面的能力以及仅通过专注于能力来减少偏见。系统与LinkedIn的集成通过促进无缝进口和简历分析来增强方法的有效性。总体而言,这项研究通过为大型组织提供可扩展,高效和无偏见的解决方案来证明NLP在优化简历筛选过程中的潜力。
flip 是一种极其简单且最大程度局部化的经典译码器,在某些类的经典代码中得到了广泛应用。当应用于量子码时,存在无法由该译码器纠正的恒重误差(如稳定器的一半),因此先前的研究考虑了 flip 的修改版本,有时还与其他译码器结合使用。我们认为这可能并非总是必要的,并提供数值证据证明当将 flip 应用于立方格子上三维环面码的环状征象时,存在一个阈值。该结果可以归因于以下事实:对于该译码器,最低权重的无法纠正误差比其他无法纠正误差更接近(就汉明距离而言)可纠正误差,因此它们很可能在未来的代码周期中经过额外噪声变换后变得可纠正。在解码器中引入随机性可以使其以有限的概率纠正这些“不可纠正”的错误,对于使用信念传播和概率翻转相结合的解码策略,我们观察到现象噪声下的阈值为 ∼ 5.5%。这与该代码的最佳已知阈值(∼ 7.1%)相当,该阈值是使用信念传播和有序统计解码 [Higgott and Breuckmann, 2022] 实现的,该策略的运行时间为 O(n3),而我们的本地解码器的运行时间为 O(n)(并行时为 O(1))。我们预计该策略可以推广到其他低密度奇偶校验码中,并希望这些结果能够促使人们研究其他以前被忽视的解码器。
在追求这一目标的过程中,消除不可预测的行为已被视为一项必要的工程费用。消除计算噪声的努力涵盖了整个微电子技术堆栈,从研究高可靠性材料和设备到纠错电路和架构,再到容错系统和算法。确定性计算显然取得了令人难以置信的成功——在不到四分之三个世纪的时间里,我们已经从大约一千个只能进行相对简单计算的阴极管阵列过渡到每秒能够处理 10 18 次浮点运算的高性能计算百亿亿次系统。[2,3] 然而,能耗已日益成为传统处理器面临的挑战。人工智能 (AI) 和机器学习 (ML) 在多种应用中的采用越来越广泛,以及对更多计算的需求不断增长,导致对结合多种技术(图形处理单元 (GPU)、中央处理单元 (CPU) 等)的异构计算平台的需求更高。随着越来越多的处理器被整合,未使用的处理器需要关闭以处理散热问题(即“暗硅”)。[4] 这些问题加上大量新设备、内存计算、高效的芯片间通信、3D 堆叠和集成技术
因此这里 ρ A 00 = c 00 c ∗ 00 = | α | 2 = p,ρ A 11 = c 11 c ∗ 11 = | β | 2 = 1 − p 且 ρ A 01 = ρ A 10 = 0。因此我们有
作者:Fenghua ling 1,2†,Zeyu Lu 3,4†,Jing-Jia Luo 1*,Lei Bai 3*,Swadhin K. Behera 2,4 Dachao Jin 1,Baoxiang Pan 5,Huidong 6,7和Toshio Jiang 6,7和Toshio Yamagata 1,2 5 6 Inst Intivation: (ICAR)/CIC-FEMD/KLME/ILCEC,8 Nanjing信息科学与技术大学,中国南京,Nanjing,Nanjing,中国9 2日本海洋境外科学技术机构,日本横滨10号,日本10 3上海AI AI AI实验室,上海,上海,上海14中国15 6日本东京Riken高级智能项目中心16 7日本东京理工学院计算机科学系17 18†同等贡献,19 *对应于jjluo@nuist.edu.edu.edu.cn,bailei@bailei@pjlab.org.org.org.org.org.org.cn 20 21