摘要 为了在动态的商业环境中保持竞争优势,组织必须不断调整、创新和重组其商业模式。由于某些商业模式设计选项的配置比其他配置更为成功,因此全面了解这些选项的(当前)解决方案空间及其依赖关系至关重要。要了解和管理一组可能的设计选项,可以依赖分类工具,包括分类法、类型学和分类方案。鉴于有几种工具类型可用,在设计和应用工具时需要考虑每种类型的不同基本假设。本文采用描述性文献综述方法,通过展示工具库并得出分析网格来揭示所选工具类型之间的异同,从而构建了多样化的分类研究主体。因此,本文(1)提高了人们对多种工具及其基本概念的认识,(2)概述了各种工具类型的现状,(3)得出了与工具设计相关的知识,指出了当前的挑战,并为未来对此类工具的构建、评估和使用的研究奠定了基础。
摘要 - 目的:riemannian几何形状用于脑部计算机界面(BCIS)已在纪念百年中获得了动力。针对Riemannian BCIS提出的大多数机器学习技术都会考虑一个人的数据分布是单峰的。但是,由于高数据可变性是脑电图(EEG)的关键限制,因此该分布可能是多模式的,而不是单峰。在本文中,我们提出了一种新型的数据建模方法,用于考虑在EEG协方差矩阵的Riemannian歧管上考虑复杂的数据分布,旨在提高BCI可靠性。方法:我们的方法,riemannian光谱聚类(RISC),代表使用基于地质距离提出的模拟测量的图形上的eeg协方差矩阵分布,然后通过光谱群集将图形节点组成。这允许在歧管上建模单峰和多模式分布。RISC可以用作设计名为Outier检测的离群检测器Riemannian光谱聚类(ODEN-RISC)和名为多模式的多模式分类器Riemannian Spectral spectral clustering(MCRISC)的基础。以数据驱动方式选择Odenrisc/Mcrisc的所有必需参数。越过,无需预先设置离群检测的阈值和多模式分类的模式的数量。结果:实验评估表明,与现有方法相比,Odenrisc可以更准确地检测EEG异常值,而Mcrisc进行了标准的单峰分类器,尤其是在高变异性数据集上。结论:预计Odenrisc/Mcrisc将有助于使现实生活中的BCI在实验室外和神经学应用程序外应用更强大。明显:RISC可以用作强大的EEG Outier检测器和多模式分类器。
尽管量子神经网络 (QNN) 近期在解决简单的机器学习任务方面表现出良好的效果,但 QNN 在二元模式分类中的行为仍未得到充分探索。在这项工作中,我们发现 QNN 在二元模式分类中有一个致命弱点。为了说明这一点,我们通过展示和分析嵌入在具有完全纠缠的 QNN 系列中的一种新对称形式(我们称之为负对称),从理论上洞察了 QNN 的属性。由于负对称性,QNN 无法区分量子二进制信号及其负对应信号。我们使用 Google 的量子计算框架,通过实证评估了 QNN 在二元模式分类任务中的负对称性。理论和实验结果均表明,负对称性是 QNN 的基本属性,而经典模型并不具备这种属性。我们的研究结果还表明,负对称性在实际量子应用中是一把双刃剑。
摘要 高维编码方案已成为执行量子信息任务的一种新方法。对于高维,光子的时间和横向空间模式是此类实验中常用的两个典型自由度。尽管如此,仍然需要用于多结果测量的通用设备来充分利用编码方案的高维特性。我们提出了一种基于进化算法的通用全场模式排序方案,该方案仅由最多两个优化的相位元素组成,可以对方位和径向模式进行联合排序。我们通过高维量子密码学背景下的模拟进一步研究了我们方案的性能,其中在不同的相互无偏基中进行排序和高保真度测量方案至关重要。