摘要背景:认知训练干预措施(CT)后的认知收益与精神分裂症患者(SCZ)的功能改善有关。但是,观察到很大的个体变异性。在这里,我们评估了大脑结构特征的敏感性,以在单个学科层面预测基于听觉的认知训练(ABCT)的功能响应。方法:我们使用支持向量机(SVM)建模的全脑多变量模式分析(MVPA)来识别灰质(GM)模式,这些模式(GM)模式预测了SCZ患者在单个受试者水平的ABCT 40小时后“较高”与“较低”功能。通过通过样本外跨验证分析(OOCV)应用原始模型来评估SVM模型的概括能力,以从经历了50个小时的ABCT的独立样本中看不见的SCZ患者。结果:全脑GM体积的模式分类预测,在随访时预测了“较高”与“较低”功能,其平衡精度(BAC)为69.4%(灵敏度为72.2%,特异性66.7%),通过嵌套交叉验证确定。神经解剖模型可推广到一个独立队列的BAC为62.1%(灵敏度为90.9%,特异性为33.3%)。结论:尤其是,在SCZ参与者ABCT之后,单个受试者水平的颞上回,丘脑,前扣带回和小脑的区域中的基线GM体积更大。
类别学习,即学习将一组刺激物分类或分组,会在感知中引起类别偏见,使得同一类别中的物品被认为比不同类别中的物品更相似。当学习目标强调每个刺激物的个体化时,类别偏见会在多大程度上发展,以及偏见是否在学习过程中自发出现而不是对任务要求的反应尚不清楚。在这里,我们在编码过程中使用功能性磁共振成像 (fMRI) 来测试学习过程中单个刺激物神经表征中的类别偏见。人类参与者(男性和女性)遇到面部混合刺激物,这些刺激物具有独特的名字和共同的姓氏,表明其属于同一类别。参与者被要求学习每张脸的全名。神经模式分类和模式相似性分析用于追踪大脑中的类别信息。结果表明,刺激类别可以在许多额叶、顶叶和枕叶区域的编码过程中被解码。此外,来自同一类别的两个刺激在前额叶皮层中的表征比来自不同类别的两个刺激在物理相似性方面更相似。这些发现表明,仅仅存在类别标签就可以在编码过程中自发地偏向神经表征以强调与类别相关的信息,即使在没有明确的分类要求并且与类别无关的信息仍然与任务目标相关的情况下也是如此。
评估 – 指纹图像的计算机增强和建模 – 指纹增强 – 特征提取 – 指纹分类 – 指纹匹配。第三单元 人脸识别和手部几何形状 9 人脸识别简介,人脸识别神经网络 – 从对应图进行人脸识别 – 手部几何形状 – 扫描 – 特征提取 – 自适应分类器 – 基于视觉的特征提取和模式分类 – 特征提取 – 算法类型 – 生物特征融合。第四单元 多模态生物特征识别和性能 9 评估 多模态生物特征识别系统简介 – 集成策略 – 架构 – 融合水平 – 组合策略 – 训练和适应性 – 多模态生物特征识别系统示例 – 性能评估 – 生物特征识别的统计测量 – FAR – FRR – FTE – EER – 内存需求和分配。第五单元 生物特征认证 9 简介 – 生物特征认证方法 – 生物特征认证系统 – 指纹生物特征认证 – 人脸识别生物特征认证 – 期望 – 最大化理论 – 支持向量机。指纹生物特征认证 – 手掌几何形状生物特征认证 – 保护和信任生物特征交易 – 匹配位置 – 本地主机 – 认证服务器 – 卡上匹配 (MOC) – 多生物特征识别和双因素认证。参考文献: 1.Paul Reid,“网络安全生物特征识别”,Pearson Education,2004 年。Nalini K.Ratha,RundBolle,“自动指纹识别系统,Springer”,2003 年。
评估 – 计算机增强和指纹图像建模 – 指纹增强 – 特征提取 – 指纹分类 – 指纹匹配。 第三单元人脸识别和手部几何形状 9 人脸识别简介,人脸识别神经网络 – 从对应图进行人脸识别 – 手部几何形状 – 扫描 – 特征提取 – 自适应分类器 – 基于视觉的特征提取和模式分类 – 特征提取 – 算法类型 – 生物特征融合。 第四单元多模式生物特征识别和性能 9 评估多模式生物特征识别系统简介 – 集成策略 – 架构 – 融合水平 – 组合策略 – 训练和适应性 – 多模式生物特征识别系统示例 – 性能评估 – 生物特征识别的统计测量 – FAR – FRR – FTE – EER – 内存需求和分配。第五单元 生物特征认证 9 简介 – 生物特征认证方法 – 生物特征认证系统 – 指纹生物特征认证 – 人脸识别生物特征认证 – 期望 – 最大化理论 – 支持向量机。指纹生物特征认证 – 手掌几何特征生物特征认证 – 确保生物特征交易的安全性和可信性 – 匹配位置 – 本地主机 – 认证服务器 – 卡上匹配 (MOC) – 多生物特征和双因素认证。 参考文献: 1. Paul Reid,“网络安全生物特征识别”,Pearson Education,2004 年。Nalini K.Ratha、RundBolle,“自动指纹识别系统,Springer”,2003 年。
摘要:基于运动想象的脑电解码是脑机接口技术的重要组成部分,是决定脑机接口整体性能的重要指标。由于运动想象脑电特征分析的复杂性,传统的分类模型严重依赖于信号预处理和特征设计阶段。深度学习中的端到端神经网络已经被应用于运动想象脑电的分类任务处理并显示出良好的效果。本研究采用卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合从脑电信号中获取空间信息和时间相关性,跨层连接的使用减少了网络梯度弥散问题,增强了网络模型整体的稳定性。通过融合CNN、BiLSTM和ResNet(本研究中称为CLRNet)对运动想象脑电进行解码,在BCI Competition IV数据集2a上证明了该网络模型的有效性,融合CNN和BiLSTM的网络模型在四类运动想象模式分类中取得了87.0%的准确率。通过加入ResNet进行跨层连接,增强了网络稳定性,进一步提升了2.0%的分类准确率,达到89.0%的分类准确率。实验结果表明CLRNet在运动想象脑电数据集的解码方面具有良好的性能。本研究为脑机接口技术研究中的运动想象脑电解码提供了更好的解决方案。
简介。- 一词“结构化光”是指具有非平凡且有趣的幅度,相位和/或极化分布的光场。大量工作已致力于生产结构化的光场,从而导致了新技术的发展和改进现有技术[1,2]。也许结构化光的最著名示例对应于携带轨道角动量的梁,广泛用于从量子光学到显微镜的应用中[3,4]。当前的工作着重于所谓的结构化高斯(SG)梁的结构梁的子类[5-8]。这些对近似波方程的解决方案具有自相似的特性,这意味着它们的强度曲线在传播到缩放因子时保持不变。sg梁包括众所周知的laguerre-gauss(lg)和雌雄同体 - 高斯(HG)梁[9],它们一直是广泛研究的主题,用于许多应用中的模态分解,例如模式分类和分量额定定位[10-13]。lg和Hg梁属于更广泛的SG梁,称为广义的Hermite-Laguerre-Gauss(HLG)模式[14,15],可以使用适当的圆柱形透镜(Attigmatic Translions)[16]来从HG或LG梁上获得。这些模式可以表示为模态Poincar´e球的表面上的点(MPS)[17-19],如图1。这种表示形式导致了这样的见解:这些梁可以在一系列散光转换上获得几何阶段[7,20 - 23]。HLG模式的MPS表示揭示了其固有的组结构和转换属性。这种结构的概括是将模态结构和极化混合[24]。但是,没有为无限的
大脑图像分析中的一项常见任务包括诊断某种疾病,其中分析并比较了健康对照组和患病受试者。另一方面,对于一组具有不同技能的健康参与者,对大脑功能的独特分析仍然是一个具有挑战性的问题。在这项研究中,我们开发了新的计算工具,以探索健康个体大脑之间可能存在的功能和解剖学差异,以不同水平的任务经验/培训率识别。为此,我们查看了业余和专业国际象棋播放器的数据集,在那里我们利用静止状态功能磁共振图像来生成功能连接(FC)信息。此外,我们还利用T1加权磁共振成像来估计形态计量连通性(MC)信息。我们将功能和解剖学特征结合到新的连接矩阵中,我们将其称为功能形态相似性连接组(FMSC)。由于FC和MC信息都易于冗余,因此使用统计特征选择减少了此信息的大小。我们使用现成的机器学习分类器,支持向量机,用于单模式分类。从我们的实验中,我们确定大脑的显着性和腹侧注意网络在两组健康受试者(国际象棋参与者)之间在功能和解剖学上不同。我们认为,由于国际象棋涉及高阶认知的许多方面,例如系统思维和空间推理,并且识别网络是对需要响应的认知任务的任务阳性,因此我们的结果是有效的,并且支持拟议的计算管道的可行性。此外,我们对现有的神经科学假设进行了定量验证,即学习某种技能可能会导致大脑的变化(功能连通性和解剖结构),并且可以通过我们的新型FMSC算法进行测试。
先进的脑成像分析方法,包括多元模式分析 (MVPA)、功能连接和功能对齐,在过去十年中已成为认知神经科学的有力工具。这些工具以自定义代码和单独的程序包实现,通常需要不同的软件和语言能力。虽然专家研究人员可以使用,但新手用户面临着陡峭的学习曲线。这些困难源于使用新的编程语言(例如 Python)、学习如何将机器学习方法应用于高维 fMRI 数据以及极少的文档和培训材料。此外,大多数标准 fMRI 分析包(例如 AFNI、FSL、SPM)侧重于预处理和单变量分析,在如何与高级工具集成方面存在空白。为了满足这些需求,我们开发了 BrainIAK (brainiak.org),这是一个开源 Python 软件包,它将几种尖端的、计算效率高的技术与其他 Python 包(例如 Nilearn、Scikit-learn)无缝集成,用于文件处理、可视化和机器学习。为了传播这些强大的工具,我们开发了用户友好的教程(Jupyter 格式;https://brainiak.org/tutorials/),以便更广泛地学习 BrainIAK 和 Python 中的高级 fMRI 分析。这些材料涵盖的技术包括:MVPA(模式分类和表征相似性分析);并行探照灯分析;背景连接;全相关矩阵分析;受试者间相关性;受试者间功能连接;共享响应建模;使用隐马尔可夫模型进行事件分割;以及实时 fMRI。对于长时间运行的作业或大内存需求,我们提供有关高性能计算集群的详细指导。这些笔记本已在多个站点成功测试,包括作为耶鲁大学和普林斯顿大学课程的问题集以及各种研讨会和黑客马拉松。这些材料是免费共享的,希望它们成为开源软件和教育材料池的一部分,用于大规模、可重复的 fMRI 分析和加速发现。
在挑战性条件下(例如强背景辐射或复杂的散射环境),具有忠实操作的主动光传感器对于跨越各种域的遥感应用是非常可取的。诸如远程陆地映射,轨道地震学或非侵入性生物医学成像之类的示例还包括探测信号的极端光子饥饿,创造了可能对基于线性光学的传统传感器进行挑战的条件。在这项工作中,我们通过基于非线性光学元件来证明一种新型的传感系统来解决这些挑战,该系统能够同时进行三维成像和激素分析,具有单光子的灵敏度和对各种噪声来源的特殊耐受性。这种非线性光学系统利用量子 - 参数模式分类(QPM),这是一种在光谱重叠的光子上选择性检测单个信号光子的新生技术,它将基于线性光学器件的其他系统产生干扰噪声。这项工作展示了一个基于QPM的成像仪,该成像仪可以可靠地重建高度散射的模糊剂,这些靶标具有毫米深度分辨率,这是由于非线性光学的时间 - picseconds脉冲的传输。利用模式选择性上转换在Niobate波导中,我们展示了耐噪声的成像,其中很少的信号光子嵌入了34倍左右重叠的背景光子中,每个探针脉冲脉冲的背景光子超过100,000倍。本研究为新的检测方式奠定了基础,该模式可能适用于各种应用。引入了基于QPM的成像仪后,其传感能力的维度被扩展到包括振动测量值,以解决由表面振动引起的时变强度波动。我们表明,可以通过计算振动光谱作为光门控的振动光谱来进行深度分辨的振动分析。使用振动签名作为一种对比机制,我们在检测强散射后面的振动目标时证明了20 dB的改善。
图 4.1 按应用划分的运营卫星。来源:[1] 17 图 4.2 全球对地观测投资。来源:[2] 18 图 4.3 对地观测上游价值链。来源:[1] 19 图 4.4 对地观测下游价值链 来源:[1] 19 图 4.5 航天市场演变。来源:[3] 20 图 5.1 商业模式画布。来源:[6] 23 图 5.2 渠道类型。改编自 [6] 24 图 5.3 从个人到自动化的客户关系类型。24 图 5.4 画布模板的两侧。摘自 [6] 25 图 5.5 因果循环图的图例。改编自 [7] 26 图 6.1 Planet 的 CANVAS 商业模式 31 图 6.2 Digital Globe 的 CANVAS 商业模式 34 图 6.3 UrtheCast 的 CANVAS 商业模式 36 图 6.4 Satellogic 的 CANVAS 商业模式 39 图 6.5 Deimos 的 CANVAS 商业模式 42 图 6.6 Spire Global 的 CANVAS 商业模式 45 图 6.7 GOMSpace 的 CANVAS 商业模式 47 图 6.8 Spaceflight 的 CANVAS 商业模式 50 图 7.1 商业模式模式分类。摘自 [16] 51 图 7.2 新的商业模式模式:民主化 EO BM 模式。摘自 TFE-9。 56 图 7.3 反馈回路图 57 图 8.1 不同发射器类型按十年划分的发射需求比较(Euroconsult) 61 图 8.2 微型发射器公司的商业模式画布 67 图 8.3 火箭公司的商业模式画布 67 图 8.4:地面站服务的商业模式画布 72 图 8.5 空间经纪公司的商业模式 76 图 8.6:Deimos sat4EO 的商业模式画布 80 图 9.1:甚高分辨率-LC 星座 CANVAS 的价值主张 88 图 9.2:包括 DISCOVERER 改进的甚高分辨率-LC 星座的商业模式画布 89 图 9.3:甚高分辨率-LC 星座 CANVAS 的价值主张 91 图 9.4:包括 DISCOVERER 改进的甚高分辨率-HP 的商业模式画布 92 图 9.5:SAROptic 星座的价值主张CANVAS 94 图 9.6:包括 DISCOVERER 改进在内的 SAROptic CANVAS 商业模式 95