Loading...
机构名称:
¥ 1.0

大脑图像分析中的一项常见任务包括诊断某种疾病,其中分析并比较了健康对照组和患病受试者。另一方面,对于一组具有不同技能的健康参与者,对大脑功能的独特分析仍然是一个具有挑战性的问题。在这项研究中,我们开发了新的计算工具,以探索健康个体大脑之间可能存在的功能和解剖学差异,以不同水平的任务经验/培训率识别。为此,我们查看了业余和专业国际象棋播放器的数据集,在那里我们利用静止状态功能磁共振图像来生成功能连接(FC)信息。此外,我们还利用T1加权磁共振成像来估计形态计量连通性(MC)信息。我们将功能和解剖学特征结合到新的连接矩阵中,我们将其称为功能形态相似性连接组(FMSC)。由于FC和MC信息都易于冗余,因此使用统计特征选择减少了此信息的大小。我们使用现成的机器学习分类器,支持向量机,用于单模式分类。从我们的实验中,我们确定大脑的显着性和腹侧注意网络在两组健康受试者(国际象棋参与者)之间在功能和解剖学上不同。我们认为,由于国际象棋涉及高阶认知的许多方面,例如系统思维和空间推理,并且识别网络是对需要响应的认知任务的任务阳性,因此我们的结果是有效的,并且支持拟议的计算管道的可行性。此外,我们对现有的神经科学假设进行了定量验证,即学习某种技能可能会导致大脑的变化(功能连通性和解剖结构),并且可以通过我们的新型FMSC算法进行测试。

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开PDF文件第1页

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开PDF文件第2页

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开PDF文件第3页

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开PDF文件第4页

形态和功能性大脑连接性将国际象棋大师与业余参与者区分开PDF文件第5页

相关文件推荐