33789 非常适合用于低端到高端安全气囊系统,因为它允许设计人员根据所需的触发环路数量扩展设计,同时提供增强的安全性和系统可靠性。 特性 • 设计工作电压为 5.2 V V PWR 20 V,最高瞬态电压为 40 V • 具有可编程感应阈值的安全状态机 • 两个具有 PWM 功能的可配置高侧/低侧驱动器 • 四个 PSI5 卫星传感器主接口 • 自我保护和诊断功能 • 看门狗和系统上电复位 (POR) • 支持完整的安全气囊系统电源架构,包括系统电源模式控制、引爆器触发电源 (33 V)、卫星传感器 (6.3 V) 以及本地 ECU 传感器和 ECU 逻辑电路 (5.0 V) • 九个可配置开关输入监视器,用于简单开关和霍尔效应传感器接口,带内部电源 • 16 位 SPI 接口 • LIN 2.1 物理层接口
33789 非常适合用于低端到高端安全气囊系统,因为它允许设计人员根据所需的触发回路数量扩展设计,同时提供增强的安全性和系统可靠性。特性 • 设计工作电压为 5.2 V V PWR 20 V,最高瞬态电压为 40 V • 具有可编程传感阈值的安全状态机 • 两个具有 PWM 功能的可配置高侧/低侧驱动器 • 四个 PSI5 卫星传感器主接口 • 自我保护和诊断功能 • 看门狗和系统上电复位 (POR) • 支持完整的安全气囊系统电源架构,包括系统电源模式控制、引爆装置电源 (33 V)、卫星传感器 (6.3 V) 以及本地 ECU 传感器和 ECU 逻辑电路 (5.0 V) • 九个可配置开关输入监视器,用于简单开关和霍尔效应传感器接口,带内部电源 • 16 位 SPI 接口 • LIN 2.1 物理层接口
33789 非常适合用于低端到高端安全气囊系统,因为它允许设计人员根据所需的触发环路数量扩展设计,同时提供增强的安全性和系统可靠性。 特性 • 设计工作电压为 5.2 V V PWR 20 V,最高瞬态电压为 40 V • 具有可编程感应阈值的安全状态机 • 两个具有 PWM 功能的可配置高侧/低侧驱动器 • 四个 PSI5 卫星传感器主接口 • 自我保护和诊断功能 • 看门狗和系统上电复位 (POR) • 支持完整的安全气囊系统电源架构,包括系统电源模式控制、引爆器触发电源 (33 V)、卫星传感器 (6.3 V) 以及本地 ECU 传感器和 ECU 逻辑电路 (5.0 V) • 九个可配置开关输入监视器,用于简单开关和霍尔效应传感器接口,带内部电源 • 16 位 SPI 接口 • LIN 2.1 物理层接口
摘要——一种称为手势控制轮椅 (HGCW) 系统的新辅助技术旨在帮助行动不便的人提高独立性和机动性。该系统由一个可穿戴设备组成,该设备带有可检测手部运动的传感器,以及用于实时数据处理和轮椅控制的 Arduino 微控制器。HGCW 系统使用手势识别算法将手势转换为相应的轮椅运动,例如向前、向后、向左和向右转,并与轮椅的控制单元进行无线通信。该系统具有成本效益、可定制和直观的特点,可供广泛的用户使用。HGCW 系统有可能彻底改变残疾人士在环境中导航的方式,使他们能够过上更加独立和充实的生活。通过改变头部运动,数据被无线发送到基于微控制器的电机驱动电路,以五种不同的模式控制椅子的旋转:向前、向后、向右、向左和特殊站立锁定。所提出的系统是使用从当地市场采购的产品组装的,并在实验室中测试了其性能,测试结果包含在本文中。
6-1 编码器状态引脚说明 6-2 编码器状态输出有效性 6-3 解码器状态引脚说明 6-4 解码器状态输出有效性 6-5 电源部分 6-6 主音频部分 6-7 辅助音频部分 6-8 外部同步部分 6-9 通道编码器部分 6- 10 时序和模式控制 6-11 主编码器部分 6-12 辅助编码器部分 6-13 主/辅助/数据多路复用器 6-14 异步数据 6-15 编码器显示 6-16 电源部分 6-17 主音频部分 6- 18 辅助音频部分 6-19 AGC 部分 6-20 时钟恢复部分 6-21 时序和模式控制部分 6-22 通道解码器部分 6-23 主解码器部分 6-24 辅助解码器部分 6-25 主/辅助/数据多路复用器 6-26 异步数据 6-27 备件 6-28 解码器显示板 6-29 推荐测试设备 A-1 DSP6000A 阈值与传输速率 A-2 频谱效率模式
摘要 孤岛式农村微电网需要持续的资源监控。需求响应方案在管理负荷方面表现出色。然而,城市需求响应方案配备了市场价格和高峰时段惩罚来控制可延迟负荷。在农村微电网中,通常使用不属于可延迟负荷类别的常规负荷,例如风扇、灯和水泵。此外,随时使用常规负荷的完全自由、缺乏意识以及没有存储储备信息使得负荷管理任务更加复杂。在本研究中,为常规运行负荷设计了全自动两层需求响应方案。第一层控制是负荷模式控制。运行模式由电池的充电状态 (SoC) 决定。在第二层中,根据消费者的日常活动、SoC 和环境温度作为成员函数设计模糊控制器。结果根据消费者的舒适度和 SoC 的可用性进行评估。自动需求响应中的负载运行与实际常规运行保持一致,符合消费者的期望,偏差为 5% 至 7%。与相关研究相比,所有运行模式下的 SoC 水平均保持高 15%,重载运行高 13.5%。
DILTA机器人是一种平行机器人,由三个臂组成,该机器人连接到底座上的通用关节。Delta机器人专为高速,精确任务而设计,通常用于诸如拾取操作,组装和包装等应用程序。本文进行了Delta机器人的进化,设计,运动学和控制系统,突出了其进步和工业应用。从1980年代的成立开始,该论文研究了雷蒙德·克拉维尔(Raymond Clavel)的开创性设计,该设计通过独特的并行机制彻底改变了高速,精确的拾取和位置操作。讨论了Delta机器人的后续迭代,包括诸如倒置配置,线性三角洲机器人,模块化设计和微观应用程序的小型化版本之类的创新。审查研究了各种控制策略,从传统的PID和滑动模式控制到基于高级神经网络的系统,这些系统应对奇异性,工作区优化和能源效率等挑战。在食品包装,药品和高精度组装等领域的应用强调了机器人的多功能性。该研究以对新兴趋势的见解,例如适应性重新配置的设计和增强的运动计划,为机器人自动化的未来创新铺平了道路。
摘要:微电网的重要性已被直接电流(DC)微电网的研究量增加所承认。主要原因是简单的结构和有效的性能。在这篇研究文章中,已经提出了双积分滑动模式控制器(DIMC)用于涉及可再生能源和混合储能系统(HESS)的能源收集和直流微电网管理。DIMC比传统的滑动模式控制器提供了更好的动态响应和减少的颤动。在第一阶段,得出了网格的状态差异模型。然后,为PV系统和混合储能系统提出了非线性控制定律,以实现DC链路上电压调节的主要目标。在后面的部分中,使用Lyapunov稳定性标准证明了系统的渐近稳定性。最后,提供了能源管理算法,以确保DC微电网在安全操作限制内的平稳运行。通过在MATLAB/SIMULINK软件上实现并与滑动模式控制和Lyapunov重新设计进行比较,通过在MATLAB/SIMULINK软件上实现了拟议的系统的有效性。此外,为了确保所提出的控制器对该方案的实际生存能力,已在实时硬件式测试工作台上进行了测试。
这项研究涉及无人直升机的控制,强调形成控制,目标跟踪,避免障碍和连续性维护。该研究采用终端滑动模式控制(TSMC)来调节直升机的位置和态度,而通用的预测控制(GPC)策略则用于通过领导者追随者的方法来形成控制。使用人工电位(APF)方法实现避免障碍物。仿真结果表明,在六个不同的任务中,快速收敛时间不到三秒钟,这表明直升机在保持静态障碍和动态障碍的同时保持其形成的能力。最初的三个任务涉及在三角形形成中组织的三架直升机,成功地避免了障碍物并以低于1%的错误率保持连续性。随后的三个任务,涉及五架五角形配置的五架直升机,类似地说明了有效的导航和动态目标跟踪。值得注意的是,领导直升机始终跟踪静态和动态目标,以确保形成的完整性。这项研究通过探索多代理直升机操作和障碍物遍历的复杂性来促进该领域,从而强调了在动态场景中保持连通性和形成的关键重要性。这些发现强调了拟议的控制策略的有效性,为包括军事和民用领域在内的各个部门的未来应用提供了宝贵的见解。
摘要:智能化是未来汽车行业的发展趋势。智能设备要求车辆的动态控制可以根据决策计划的轨迹输出来完成轨迹跟踪,并确保车辆的驾驶安全性和稳定性。但是,紧急情况引起的轨迹限制规划和严格的道路条件将增加轨迹跟踪和无人车辆稳定控制的困难。鉴于上述问题,本文研究了分布式驱动器无人车辆的轨迹跟踪和稳定性控制。本文应用了分层控制框架。首先,在上部控制器中,提出了算法后的自适应预测时间线性二次调节器(APT LQR)路径,以考虑轮胎的动态稳定性性能,以获取所需的前轮驱动角度。DDAUV的横向稳定性是基于相位平面确定的,在改进的滑动模式控制(SMC)中,滑动表面进行进一步调节,以获得所需的额外偏航矩,以协调路径后跟随和横向稳定性。然后,在下部控制器中,考虑到四个轮胎的滑动和工作负载,建立了全面的成本功能,以合理地分配四个轮毂电动机(IWM)的驾驶扭矩,以生成所需的额外偏航矩。最后,建议的控制算法通过硬件(HIL)实验平台验证。结果显示了以下路径,并且在不同的驾驶条件下可以有效地协调横向稳定性。