已经研究了用于测试套件的自动质量评估的软件指标,例如覆盖范围或突变分数。虽然传统工具依靠软件指标,但自动驾驶汽车(SDC)的领域主要集中在基于模拟的测试案例生成上,使用质量指标(例如OB(OOB)参数)来确定测试案例是否失败或通过。但是,尚不清楚这种质量指标与人类对SDC的安全性和现实主义的看法在多大程度上保持一致。为了解决这个(现实)差距,我们进行了一项实证研究,涉及50名参与者,以研究人类如何将SDC测试案例视为安全,不安全,现实或不现实的因素。为此,我们开发了一个利用虚拟现实(VR)技术(称为SDC-Alabaster)的框架,将研究参与者浸入SDC模拟器的虚拟环境中。我们的发现表明,人类对失败/通过测试案例的安全性和现实主义的评估可能会根据不同的因素而有所不同,例如测试的复杂性以及与SDC相互作用的可能性。尤其是为了评估现实主义,参与者的年龄会导致不同的看法。这项研究强调了对模拟测试质量指标的更多研究的需求以及人类感知在评估SDC中的重要性。
量子密集输出问题是使用量子计算机评估时间相关量子动力学中时间累积的可观测量的过程。该问题经常出现在量子控制和光谱计算等应用中。我们提出了一系列旨在在早期和完全容错量子平台上运行的算法。这些方法借鉴了振幅估计、汉密尔顿模拟、量子线性常微分方程 (ODE) 求解器和量子卡尔曼线性化等技术。我们针对演化时间 T 和容错率 ǫ 提供了全面的复杂性分析。我们的结果表明,对于某种类型的低秩密集输出,线性化方法几乎可以实现最佳复杂度 O (T/ǫ)。此外,我们对密集输出问题进行了线性化,从而得出包含原始状态的精确有限维闭包。该公式与库普曼不变子空间理论有关,可能在非线性控制和科学机器学习中具有独立意义。
使用可持续材料引起了当今世界各地研究人员的关注。这是由于可持续材料的环保,可再生,可生物降解和无毒的行为,这些行为已用于各个部门,例如能源和功率,先进的材料开发,航空,药物输送,组织工程,组织,汽车,防御和腐蚀迁移。1 - 7在腐蚀迁移的地区,近年来,使用植物提取物等可持续材料(例如植物提取物)一直是研究与开发的重点。这是由于植物提取物的无毒行为与碳钢的有毒常规抑制剂相比。8种植物提取物,例如Terebinth的提取物,9个水瓜,10个荨麻叶,11番茄Pomace,12个Piper Guineense,13
•测试参考年度(TRY)描绘了平均天气条件用于能源需求建模。try是从个人月份中汇编的,主要基于空气温度,相对湿度,太阳辐射,其次是在风速上选择的最多平均月。•设计夏季(DSYS)用于在过热的情况下测试在几乎极端条件下的建筑物。DSY描绘了中度炎热的一年;在7个夏天(1984-2013)中只有1个的一年更热。此外,可以使用描绘强烈一年且漫长的一年的DSYS文件在更不利的条件下评估建筑物。强烈的一年包含一个温暖的咒语,其持续时间类似于中等年份,但强度更高。漫长的一年包含一个温暖的咒语,其持续时间和强度更大,但其强度低于强度的一年。
响应越来越严重的天气条件,建筑绩效和投资的优化提供了一个机会,可以在能源效率改造过程中考虑热弹性的共弹力。考虑到历史(2010年代),中期未来(2050年代)和长期未来(2090年代)典型的气象年份和热浪浪潮年,考虑到九种天气情况下,使用建筑物绩效模拟来评估建筑物的热弹性,以评估室内过热的风险。这样的分析基于结合六个集成指标的弹性概况。在巴西进行了一个由92座建筑物的地区进行的案例研究,并确定了改善热弹性的策略。结果反映了在气候变化背景下计划弹性的必要性。这是因为在当前条件下推荐的策略在将来可能不是理想的。因此,应优先考虑适应性设计。到2050年代,冷却能源消耗可能会增加48%,而过度过热的问题可能达到建筑物的37%。简单的被动策略可以大大减轻热应力。全面的热弹性分析最终应伴随着利益相关者的目标,可用资源和规划范围的全面反映,以及假定的不弹性的风险。
在电池技术领域,通常采用了两种主要方法进行细胞平衡:被动平衡和主动平衡。被动平衡,其特征在于使用电阻等耗散成分,将多余的能量散发为热量以达到细胞之间的平衡(Wei和Zhu,2009年)。另一方面,主动平衡涉及使用电容器,电感器或变压器等能量存储组件之间电荷之间的转移,从而实现了更有效的能量利用和更快的平衡(Qi和Dah-Chuan Lu,2014年)。设计有效的细胞平衡电路必须在性能,成本和复杂性之间保持仔细的平衡。平衡技术和电路配置的选择取决于各种因素,包括电池单元的类型,应用程序要求和成本注意事项(Weicker,2013年)。
量子计算资源,而无需在量子硬件上进行大量的前期投资,从而在量子软件和算法方面取得了巨大进步。10主要的云提供商,例如 Microsoft Azure、11AWS 12 和 IBM 13,现在都提供基于云的量子计算服务访问。此外,当未来量子硬件普及时,量子计算资源预计将扩展到边缘网络14,15,预示着量子云-边缘连续体混合范式的出现,16其主要组成部分如图1所示。未来的量子计算范式预计将包含位于不同层(包括云和雾/边缘层)的异构量子和经典计算实体。基于云的资源和基于边缘的资源之间的主要区别包括计算能力、移动性以及与数据源或用户的地理距离。17每一层都包含不同的计算资源和中间组件,例如用于资源管理和编排的网关和代理。如果边缘计算资源不足以执行传入的任务,则可以将这些任务迁移或卸载到具有更强大功能的上层云层。18,19 需要强调的是,这是量子计算未来扩展的愿景,而由于当前量子硬件的数量、质量和成本限制,大多数可用的量子资源只能通过云访问。20
tl; dr3D中的湍流不仅仅是“只有一个维度”自回归模型努力通过时间跟踪复杂的涡旋结构生成的建模使我们可以直接从流量状态的流动状态中进行样品,从而在跟踪问题
应力测试是开发出,该测试的重点是质子交换膜电解的阳极催化剂层降解,这是由于模拟的起步操作而引起的。ex exte测试表明,由于近表面还原和循环到高电位时,重复的氧化还原循环会加速催化剂溶解。相似的结果发生在原位,其中发现细胞动力学(> 70%),虹膜从阳极催化剂层迁移到膜中。但是,观察到其他过程,包括虹膜氧化的变化,较薄和更密集的催化剂层的形成以及从运输层迁移的铂。还发现了增加的界面弱化,通过增加催化剂层的接触电阻和分离部分,从而增加了欧姆和动力学损失。反复的水流关闭进一步加速性能损失,并增加界面和催化剂层内的撕裂和分层的频率。这些测试应用于几种商业催化剂,在其中观察到含有钌或高金属含量的催化剂的损失率更高。这些结果表明有必要了解如何发生操作停止,以确定损失机制的加速方式以及制定限制绩效损失的策略。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad2bea]这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。