到目前为止,“模糊逻辑”一词通常指一种特定的控制工程方法,该方法利用常识控制规则的数值表示,以便通过插值合成控制律。这种方法与神经网络有许多共同特征。它现在主要关注数值函数的有效编码和近似,目前与知识表示问题的关系越来越少。然而,这是对模糊逻辑的非常狭隘的看法,与人工智能关系不大。扫描模糊集文献,人们意识到模糊逻辑也可能指另外两个与 M 相关的主题:多值逻辑和近似推理。虽然多值逻辑流非常以数学为导向,但 Zadeh 设想的近似推理概念与人工智能研究的主流程序更相关:他在 1979 年写道:“近似推理理论涉及从一组不精确的前提中推导出可能不精确的结论”。在下文中,我们将使用术语“模糊逻辑”来指代任何一种旨在用于推理机制的基于模糊集的方法。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
15.补充说明 这项工作是在任务 AM-A-00-HRR-519 下进行的。16.摘要:在 FAA 民用航空医学研究所的可重构通用航空模拟器(配置为 Piper Malibu)中评估了一种模糊逻辑“性能控制”系统,该系统提供包络保护和对空速、垂直速度和转弯速率的直接控制。在一项飞行任务中评估了 24 个人(高飞行时间飞行员、低飞行时间飞行员、学生飞行员和非飞行员各 6 人)的表现,该任务要求参与者跟踪从起飞到着陆的 3-D 航线,由图形路径主飞行显示器表示。还使用传统控制系统收集了每个受试者的基线表现。所有参与者都操作每个系统,对其功能进行了最少的解释,并且没有接受过任何培训。结果表明,模糊逻辑性能控制减少了变量误差和超调,新手学习所需的时间更少(从达到稳定性能所需的时间可以看出),使用起来所需的努力更少(减少了控制输入活动),并且受到所有群体的青睐。
呼吁论文:传统的机器学习模型缺乏处理现实世界不确定性,提供可解释模型的能力,并提供了支持动态环境的强大机制。模糊集,模糊逻辑和模糊系统以其对不确定性建模的能力,增强模型的可解释性的能力而闻名,并提供了一种有效且灵活的方式来表示数据和导航预测模型。因此,机器学习和模糊技术的整合是盛行的,并且在许多领域都取得了巨大的成功。这个特别会议旨在为研究人员提供一个论坛,以分享整合模糊技术和机器学习方法的最新结果。
物联网(IoT)设备的爆炸爆炸创造了大量的实时数据,需要复杂的数据挖掘方法(DMT),这些方法可以快速提取有价值的见解。管理处理高数据量的计算复杂性,整合各种物联网数据格式,并确保系统可以扩展是最重要的问题之一。模糊动态自适应分类器优化分析(FDACOA)是一种方法,已被建议作为一种方法,以解决数据模式变化,实时处理和数据异质性引起的困难。通过合并自适应模糊逻辑(AFL)和启发式优化,FDACOA提高了数据分类的精度和效率,同时确保该算法可以适应数据流的变化。这种适应性在物联网应用中至关重要,在物联网应用中,数据波动可能会影响分析质量。FDACOA使用动态适应来根据实时反馈改变分类器参数,以提高预测准确性并降低计算成本。优化层微型模糊规则和成员资格功能,以优化跨数据情况的性能。仿真分析证明了该算法以高准确性和低计算成本进行分类的能力。智能医疗保健,工业物联网中的预测维护和智能运输系统使用FDACOA进行实时决策和数据驱动的见解。FDACOA是一种可行的方法,用于在IOT支持的大数据上下文中进行动态数据挖掘,因为它的速度更快,更准确且更适应性地适应性模拟结果。关键字:模糊启发式算法,动态数据挖掘,物联网,集成的大数据环境,分类优化。
1通讯作者:dsbsrm@gmail.com收到:2023年5月9日修订:2023年6月28日接受:2023年7月13日出版:2023年7月21日摘要 - 铅酸电池的性能和健康,用于自动,工业和可再生能源系统等各种应用中的铅酸电池的性能和可再生能源系统的运营效益和实量效益和实地效益。实时监控电池健康的性能可防止故障并延长电池寿命。本文建议使用模糊逻辑控制器和硬件(HIL)模拟器进行铅酸电池实时监控系统的健康和性能。所提出的系统测量关键电池参数,例如电压,电流和温度。它使用模糊的逻辑算法处理这些数据,以计算电池的充电状态(SOC)和健康状况(SOH)。HIL模拟器提供了一个虚拟平台,用于实时测试和验证系统。调查结果表明,提出的方法可以产生可靠的电池SOH估计值,这使其成为各种应用中实时电池监视的有前途的解决方案。关键字 - 模糊逻辑控制器,HIL实时模拟,铅酸电池,充电状态,健康状况。
糖尿病等疾病是慢性的,需要长期管理。 胰岛素的产生不足会导致高血糖水平。 这些疾病导致严重的健康问题,例如心脏病,血管投诉,眼睛疾病,肾功能障碍和神经疾病。 因此,对危险因素的准确评估和管理对于糖尿病的发作至关重要。 我们提出的方法结合了模糊逻辑和机器学习算法的糖尿病风险预测。 三种机器学习模型经过培训,将患者分为两类糖尿病(I型和II型),这些糖尿病基于他们从卡蒂哈尔医学院和医院和苏瓦丹实验室收集的临床数据集。 多项式回归算法的得分为0.947,而RBF内核的支持矢量回归算法的得分为0.954,线性内核的得分为0.73。 我们建议的糖尿病等疾病是慢性的,需要长期管理。胰岛素的产生不足会导致高血糖水平。 这些疾病导致严重的健康问题,例如心脏病,血管投诉,眼睛疾病,肾功能障碍和神经疾病。 因此,对危险因素的准确评估和管理对于糖尿病的发作至关重要。 我们提出的方法结合了模糊逻辑和机器学习算法的糖尿病风险预测。 三种机器学习模型经过培训,将患者分为两类糖尿病(I型和II型),这些糖尿病基于他们从卡蒂哈尔医学院和医院和苏瓦丹实验室收集的临床数据集。 多项式回归算法的得分为0.947,而RBF内核的支持矢量回归算法的得分为0.954,线性内核的得分为0.73。 我们建议的胰岛素的产生不足会导致高血糖水平。这些疾病导致严重的健康问题,例如心脏病,血管投诉,眼睛疾病,肾功能障碍和神经疾病。因此,对危险因素的准确评估和管理对于糖尿病的发作至关重要。我们提出的方法结合了模糊逻辑和机器学习算法的糖尿病风险预测。三种机器学习模型经过培训,将患者分为两类糖尿病(I型和II型),这些糖尿病基于他们从卡蒂哈尔医学院和医院和苏瓦丹实验室收集的临床数据集。多项式回归算法的得分为0.947,而RBF内核的支持矢量回归算法的得分为0.954,线性内核的得分为0.73。我们建议的
应对可再生能源转变的决定因素进行必要的改进。但是,由于所有改进都会增加成本提高,因此有必要优先考虑更重要的问题。因此,需要进行新的分析,其中将确定这些标准中最重要的分析。这项研究的目的是确定可再生能源过渡的最重要项目。在这种情况下,根据文献综述结果选择了五个标准。球形模糊(基于TOPSIS的DEMATEL)上符号方法可以考虑计算这些指标的权重。在研究的第二部分中,替代方案按球形模糊排名技术排名,几何平均值与最佳解决方案(Ratgos)的几何平均值。在这种情况下,将金砖国家(巴西,俄罗斯,印度,中国,南非)选为替代方案。主要贡献是在考虑比例概念中的几何平均值时创建了一种新方法(Ratgos)。在另一边,还提出了一种新的方法(顶级)来克服Dematel中的批评。得出的结论是,技术发展对于可再生能源转变的成功起着最重要的作用。同样,在这种情况下,找到有效的财务来源也非常重要。排名结果还表明,中国和俄罗斯是关于可再生能源转型的最成功国家。技术发展对于能源储能过程的效率也是必需的。但是,还可以确定的是,南非和印度在与其他金砖国家的可再生能源过渡方面的成功率较低。可以理解,技术发展在提高可再生能源过渡过程的效率方面起着至关重要的作用。由于使用了最新技术,因此可以更有效地使用能源。气候条件下的变化会导致能源生产过程中的不规则性。由于有效的能源存储过程,可以解决此问题。
摘要 - 驾驶员的嗜睡状态是广泛讨论的话题,因为它在造成交通事故中的重要作用。本研究提出了一种新的方法,该方法结合了模糊的常见空间模式(CSP)优化的相位内聚序列(PC)表示和模糊CSP优化的信号振幅表示。该研究旨在检查机敏状态和嗜睡状态之间脑电图(EEG)同步的变化,通过分析脑电图数据,预测驱动因素的反应时间,并随后确定嗜睡的存在。该研究的发现表明,这种方法成功地区分了警报和昏昏欲睡的精神状态。通过使用基于自动编码器的深度编码器数据融合技术和回归模型,例如支持向量回归(SVR)或最少的绝对收缩和选择运算符(LASSO),该提出的方法使用与回归器模型组合的单个特征集优于单个特征集。通过评估均方根误差(RMSE),平均绝对百分比误差(MAPE)和相关系数(CC)来衡量这种优势。换句话说,基于自动编码器的振幅EEG功率功能和PCS功能的融合在回归中,单独在回归器模型中使用这些功能中的任何一个。具体而言,与仅使用单个振幅EEG功率功能和回归相比,与基线模型相比,提议的数据融合方法的RMSE降低了14.36%,MAPE降低25.12%,CC降低了10.12%。
当一个人成为利他决策的对象时,尤其是当这一决策会给主体带来成本时,就会产生感激之情。在这里,我们研究了个体在有风险(已知概率的不确定性)和有模糊(未知概率的不确定性)成本的情况下如何评价他人的利他决策,并以感激和互惠做出反应。参与者在 fMRI 扫描仪中玩一个互动游戏,在游戏中他们会受到痛苦的电击。一位匿名的同伴有意(人类条件)或无意(计算机条件)决定是否通过承担一定程度的痛苦(即成本)来帮助参与者减轻一半的痛苦(确定、有风险、模糊)。然后,参与者可以将金钱积分转移给同伴,并且知道同伴不知道这次转移。从行为上看,在人类条件下,随着成本不确定性水平的增加,金钱分配和感激评级会增加;在计算机条件下,这些影响会降低。成本不确定性对感激的影响是由帮助背后感知到的善意所介导的。FMRI 揭示了在风险和模糊性条件下评估施恩者利他决策的共同和不同的神经认知基础:两者都与恐惧和焦虑相关的过程有关,涉及右侧眶额皮质和前脑岛;模糊性还引发了心理化和冲突监控相关的过程,涉及背内侧前额皮质和背前扣带皮层。这些发现强调了社会不确定性感知在感激之情产生中的关键作用。