哪个物体最重? A 物体 AB 物体 BC 物体 CD 它们的重量都相同(1) 1.7 哪个是水凝结的例子? A 大量运动后,额头上冒出汗水。 B 炎热夏日午后消失的水坑。 C 寒冷的夜晚,植物上结露。 D 冰块放在阳光下融化。(1) 1.8 这些东西被埋在潮湿的地面上。几年后被挖出来。哪一个保持不变? A 鸡蛋壳 BA 塑料杯 CA 纸盘 DA 橘子皮(1) 1.9 以下哪种活动会形成不同的材料类型? A 钉子留在外面生锈了 BA 玻璃掉落,碎成小块 C 削尖的铅笔 DA 橡皮筋被拉长直到断裂(1) 1.10 下图显示了哪种状态变化? A 液体变成气体 B 固体变成气体 C 气体变成液体 D 固体变成液体 (1) (10) 问题 2 在 B 列中写下与 A 列中对应单词相匹配的正确陈述的字母。在 C 列中仅写下您选择的字母。
摘要。本文研究了俄罗斯科学院亚热带科学中心的亚热带植物的生物多样性(Citrus L.,Diospyros Kaki L.和Feijoa Sellowiana B.)。柑橘类水果由144个分类单元,柿子 - 27种品种,feijoa - 13个标本。该研究的目的是保留生物多样性,并通过新的介绍和选择品种补充收藏品。可收集标本可活着保存,并作为全面研究的对象。经济上有价值的特征的来源 - 早期成熟,矮人,冬季坚韧,早期成熟,水果规模和生产力 - 已被鉴定出来,并包括在各种繁殖计划中,以创造和改善品种。由于杂交的结果,获得了各种杂种形式,包括350张形式。目前正在测试两种形式的Feijoa Sellowiana(SHW-1:13-11),两种杂种C. Paradise(GA-1; G-A-2)和四种形式的Diospyros Kaki。在2023年,收藏品的生物多样性在中心繁殖了四个新品种。三种橘子(Academichesky','Solnechny','solnechny','Prince Vladimir')和各种东部柿子(“ Zukhra')的品种包括在俄罗斯联邦繁殖成就的国家登记册中。
我既不是熟练的程序员,也不是动手能力强的人,更不是杰出的专业人士;我只是个电脑迷。如果你愿意的话,可以称其为电脑狂热者。但是,如果大卫·鲁本博士可以写关于性的内容,我当然也可以写关于电脑的内容。我写这本书就像写给侄子的一封信,闲聊而又私人。对于读者来说,这也许不那么无聊。对于匆忙写这本书的作者来说,这当然不那么无聊。就像一本摄影杂志,它在欢快的环境中向你抛出一些基本知识。其他内容也被加入进来,这样你就能听到它们的声音,即使细节难以捉摸。(我们学习大多数日常事物都是从模糊的印象开始的,但不知何故鼓励这些通常被认为是不值得尊敬的。)我在这里选择的内容是任意的。基于什么可能会有趣并能快速洞察。任何聪明的高中生,或任何其他能偶然浏览摄影杂志细节的人,都应该能够理解这本书,或了解主要思想。虽然这本书可能有助于您谈论这些话题,但这并不会使您成为程序员或计算机专家。也许当新机器侵入您的生活时,您会感到更自在(或至少能够应对)。如果您有机会学习编程——请参阅第页的建议——对于任何四年级以上的学生来说,这都是一次非常好的经历。但这本书的主要思想是帮助您区分苹果和橘子,以及哪个问题出在哪。我希望您能从这里继续下去,并提出了一些建议。
昆虫是地球上种类最丰富的群体之一。它们构成了许多动物多样性,并在生态系统中起着至关重要的作用,包括授粉,害虫控制和分解。但是,仅描述了这种多样性的一部分。南非被认为是全球生物学上最多样化的国家之一,估计有44,000种昆虫物种。许多农作物依赖于昆虫传粉媒介,包括菜籽,苹果,橘子和向日葵。目前缺乏野生传粉媒介会威胁农作物的产量,但我们对南非昆虫多样性的了解却很少。相对于南非的生物多样性,几乎没有分类专家,用于昆虫识别的方法可能是耗时且昂贵的。DNA条形码为加速昆虫生物多样性研究提供了重要的研究工具。在这篇综述中,我们询问了公共DNA条形码粗体(生命数据系统的条形码)数据库中的“昆虫”记录,并返回了416 211个已发表的记录,分配给28239个独特的垃圾箱(条形码指数编号)。我们确定了五个分类订单,其垃圾箱比南部非洲已知的物种多(膜翅目,双翅目,thysanoptera,plecoptera和strepsiptera)。大多数条形码记录均来自豪登省,姆普马兰加和林波波的不适陷阱采样,而南非其他地区的采样仍然很差。我们建议需要进行全面的国家抽样努力,以及对分类专业知识的投资增加,以在物种遗失以灭绝之前生成有关昆虫生物多样性的关键基线数据。
也称为生物水,结合水,活化的水,通电水,相干水域,有活力的水或六边形水[2]。当非结构化的液态水暴露于化学和/或电磁能源(例如臭氧或过氧化氢与紫外线或磁场)的组合时,水分子的一部分将分解为羟基自由基。基于羟基发电机技术的水处理系统,这是波长为185 nm或较短的紫外灯的组合。除了磁场的强度之外,水的矿物质及其温度影响结构与散装水的比率[3]。许多农业应用受益于结构化水,因为它没有能量毒素。除了增加能量外,它还调节和平衡土壤矿物质,并带来高氧合状态。结构化的水帮助草莓,橘子,芽菜,柠檬和葡萄生长得更快,更健康,早就成熟,产生更多美味的食物,并使其更加新鲜更长(保质期)[4]。一般而言,结构化水会带来以下好处:果实,谷物,蔬菜生产的100%增加;用水量减少60%;化学使用量的100%降低;更好的害虫,霉菌,藻类控制;健康的农作物,鸟类,牛;抵抗极端温度;改善土壤条件;提高风味,质地和保质期。在结构化水方面,华盛顿大学的杰拉尔德·波拉克(Gerald Pollack)教授是一个先驱,因为他定义了第四阶段的水,也称为结构化水。对结构化水的抗氧化特性及其对动物细胞生物活性的影响的研究表明,它有助于正常细胞,同时抑制恶性细胞,这对动物和人类都有好处[5]。可以使用核磁共振光谱(NMR)观察到六边形结构,这是研究期刊上几个科学出版物的主题。植物的产量较高,导致细胞壁的水合增加。因此,结构化水高度适用于农业[6]。由于其高密度与普通水相比,悬浮的微球被排除在悬浮水之外,导致了排除区,该区域已被称为此类。此外,已经观察到,-200 mV的电势在排除区域之外并超出其边界(负排除区)[7]。
(154)Dhar,P.,Nickhil,C。和Deka,S。C.(2024)。从皇后菠萝废物中提取的饮食纤维的酶促修饰:对功能和结构特性的影响。食物测量和表征杂志(接受)。(153)C。Nickhil和S. C. Deka(2024)。使用基于机器学习的光谱技术在成熟阶段对普通话橙色水果质量的无损估计。食物测量和表征杂志(接受)。(152)Raj Singh,R。Nisha,Konga Upendar,C。Nickhil和S. C. Deka(2024)。对食物新鲜度检测的预先深入学习方法的全面审查。食品工程评论(接受)。(151)Raj Singh,C。Nickhil,R。Nisha,Konga Upendar和S. C. Deka(2024)。在储存过程中研究氧,二氧化碳和乙烯气体对卡西蛋白橘子水果的影响。农业科学技术(接受)。(150)Kumari,T.,Das,A。B.和Deka,S。C.(2024)。益生元和益生菌在肠道微生物组健康中的协同作用:机制和临床应用。食物生物工程。(接受)。(149)Kumari,T.,Das,A。J.,Das,A。B.,Reddy,C。K.和Deka,S。C.(2024)。酶修饰的豌豆果皮饮食纤维的益生元活性:一项体外研究。生物活性碳水化合物和饮食纤维。(https://doi.org/10.1016/j.bcdf.2024.100452)。(148)Singh,R.,Nisha,R.,Naik,R.,Upendar,K.,Nickhil C.和Deka,S.C。(2024)。多模式水果和蔬菜质量评估的深度学习中的传感器融合技术:全面评论。食品测量和表征杂志。(doi https://doi.org/10.1007/s11694-024-02789-z)(147)Nickhil,C.,Singh,Raj&Deka&Deka&Deka,S.C。和Nisha,R。(2024)。探索手指小米存储:对挑战,创新和可持续实践的深入评论。谷物研究通讯。https://doi.org/10.1007/s42976-024-00550-2(146)Das,M。J.,Banerjee,D.,Banerjee,A.,Muchahary,S.,Sinha,Sinha,A.siceraria(Molina)Standl的安全性和抗糖尿病活性。链蛋白酶诱导的糖尿病大鼠中的果汁。民族药理学杂志,319:117111。
未精制(原)糖、经验证的可持续未精制(原)糖、糖蜜、用于生产乙醇的糖蜜、用于动物饲料的糖蜜、用于蒸馏的糖蜜、用于食品配料的糖蜜、结晶果糖粉、葡萄糖粉、一水葡萄糖、高果糖玉米糖浆、液体葡萄糖糖浆、麦芽糊精粉、麦芽糖浆、乙酰磺胺酸钾 (Ace-K)、阿斯巴甜、糖精钠、三氯蔗糖、木糖醇、天然玉米淀粉、改性玉米淀粉、玉米粉、天然木薯淀粉、木薯淀粉、小麦淀粉、苹果、葡萄、柠檬、芒果、橙子、梨、菠萝、番茄、芦荟、杏、香蕉、樱桃酸、番石榴、橘子、胡萝卜、椰子、百香果、桃子、椰果、草莓、碱化脂肪还原可可粉、去皮花生碎、碎花生、去壳芝麻、花生粉、花生酱/花生酱、花生、芝麻、花生碎、全澳洲坚果、无水乳脂、黄油、酪蛋白粉、全脂奶粉、全脂奶粉、脱脂奶粉、甜乳清粉、乳清蛋白浓缩物、全脂奶粉、AFP 卷、HDPE 树脂、LDPE 树脂、LLPDE 树脂、PP 树脂、PET 树脂、PS 树脂、不透明白色 r、rPET 薄片、rPET 树脂、rHDPE 树脂、rPP 树脂、玻璃瓶、纸、大卷、牛磺酸、酸度调节剂、无水柠檬酸、柠檬酸粉、一水柠檬酸、苹果酸、苹果酸粉、柠檬酸钠、柠檬酸钠粉末、抗坏血酸、抗坏血酸粉末、丙酸钙、丙酸钙粉末、谷氨酸钠、味精粉末、山梨酸钾、山梨酸钾粉末、苯甲酸钠、苯甲酸钠粉末、羧甲基纤维素 (CMC)、角叉菜胶、改性淀粉、天然玉米淀粉、果胶、木薯淀粉、黄原胶、青苹果香精、清凉薄荷、大米基葡萄糖糖浆、大麦、木薯片、可溶性干酒糟 (DDGS)、玉米、棉花、柑橘颗粒、鱼粉、大米、大豆、豆粕、大豆油、葵花籽油、硝酸铵、混合 NPK、NPK、尿素、甘蔗渣、甘蔗渣颗粒、椰子壳、椰子壳、混合热带草颗粒、秸秆颗粒、棕榈仁、稻壳、稻壳颗粒、木材颗粒、空果串、VIVE 验证的可持续生物质、传统能源、激励能源(可再生)、VIVE 或 I-REC 验证的可持续能源信用、含水乙醇、无水乙醇、燃料级乙醇、工业级乙醇、中性级乙醇、太阳能……
比经典玩家有优势。随后,研究人员分析了许多其他量子博弈的例子,这些例子主要基于Meyer 和Eisert、Wilkens 和Lewenstein 提出的框架。(例如,请参阅综述 [ GZK08 ] 的摘要和参考资料。)这项工作的某些方面因多种原因而受到批评。许多(但肯定不是全部)量子博弈论论文受到的一个共同批评点是它们对经典行为的概念动机不强。具体而言,量子博弈论论文中的经典玩家通常仅限于标准基态的相干排列,或同样受限制的幺正运算类,而量子玩家可以使用一组受限制较少的幺正运算,甚至可能是所有幺正运算。这种经典性概念是Meyer 和Eisert、Wilkens 和Lewenstein 原始例子中的关键要素,它本质上邀请量子玩家加以利用。量子信息论中对经典行为的更标准解释是假设经典玩家操纵的任何量子系统都是完全退相干的。van Enk 和 Pike [ vEP02 ] 提出的另一个批评观点是,在量子博弈论论文通常采用的特定框架内比较量子游戏与经典游戏就像比较苹果和橘子。尽管有人可能会说,当玩家的行为被限制在标准基态的排列中时,这些游戏提供了经典游戏的忠实表示,但它们的量子重构简单地说就是不同的游戏。因此,限制较少的量子玩家可能会找到优势,从而导致新的纳什均衡等等,这并不奇怪。然而,尽管这不是他们的主要关注点,但 Meyer 和 Eisert、Wilkens 和 Lewenstein 都清楚地提出了更一般的量子游戏定义,其中可以考虑广泛的相互作用,包括刚刚提出的批评不再相关的相互作用。尤其是,Meyer 提到了他的量子博弈模型的凸形式,其中经典玩家可以通过完全退相干操作建模。而 Eisert、Wilkens 和 Lewenstein 在其论文的脚注中描述了一个模型,其中玩家的行为不仅对应于幺正操作,还对应于任意量子信道(由完全正和迹保持线性映射建模)。无论哪种情况,都可以考虑更一般的战略互动,而不必将注意力局限于经典博弈的类似物或识别“量子优势”。例如,各种量子交互式证明系统以及许多量子加密场景和原语都可以被视为量子博弈。另一个例子是量子通信,可以将其建模为一个玩家试图将量子态传输给另一个玩家的游戏,而代表对抗性噪声模型的第三个玩家则试图破坏传输。我们在本文中不提供任何具体建议,但想象可以发现具有社会或经济应用的量子游戏并非不合理。现在我们将总结我们采用的量子游戏的定义,从相对简单的非交互式设置开始,然后转向更一般的