增材制造 (AM),也称为 3D 打印,在制造金属部件的各个行业中得到广泛认可。部件的微观结构和性能因打印过程和工艺参数的不同而有很大差异,预测影响结构、性能和缺陷的致病变量有助于控制它们。由于模型在能够正确预测实验观察结果时最有用,因此我们专注于经过充分验证的可用 AM 机械模型。具体而言,我们严格审查了传输现象模型在凝固、残余应力、变形、缺陷形成以及微观结构和性能演变研究中的应用。我们还评估了 AM 模型在理解常用 AM 合金的可打印性和制造功能梯度合金方面的功能。考虑到建模知识方面的差距,确定了未来研究的机会。本综述的独特之处在于,它对借助比例模型、双向模型、基于云的大数据、机器学习和 AM 硬件的数字孪生快速认证 AM 组件进行了实质性讨论。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的过程,通常需要其他制造技术(例如热处理和表面处理操作)来实现高质量的组件。为了优化给定组件的每个单独过程,必须考虑和了解其在整个过程链中的进展,这可以通过使用经过验证的模型来实现。本文旨在概述可用于开发 MPBF 流程链数字孪生的各种建模技术,包括物理和数字实体之间的数据传输方法和不确定性评估。通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造流程链模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
固态连接技术如图 1 所示。该技术已广泛应用于铝合金、镁、铜、钛和钢。与传统的熔焊方法相比,FSW 工艺的优势包括机械性能更好、残余应力和变形小、缺陷发生率低 [1-2]。该焊接技术正在应用于航空航天、汽车和船舶制造业,并吸引了越来越多的研究兴趣。FSW 技术需要彻底了解该工艺,并随后评估焊缝的机械性能,以便将 FSW 工艺用于航空航天应用部件的生产。因此,需要进行详细的研究和鉴定工作 [3]。基于两块待连接板材的接合面摩擦生热,在 FSW 工艺中,一种带有适当设计的旋转探头的特殊工具沿接触金属板的厚度向下移动,通过相关的搅拌作用产生高度塑性变形区。局部热机械影响区是由工具肩部和板顶面之间的摩擦以及与工具接触的材料的塑性变形产生的 [4]。探头通常略短于工件厚度,其直径通常略大于
摘要:在大规模的定向能量沉积加成制造(DEDAM)为海上应用中使用镍铝青铜(NAB)合金的兴趣增加了,但一个挑战在于组成失真,这是由于制造过程中产生的残余应力而产生的。本文介绍了NAB激光热线(LHW)DEDAM的热机械模拟的开发和评估,以预测部分变形。在开放文献和公共数据库中,使用了NAB C95800的温度依赖性特性的缺乏,使用用各种DEDAM过程制造的测试样品测量了NAB C95800的温度依赖性材料和机械性能。Autodesk的NetFabb本地仿真软件是一种基于商业的元素AM求解器,但已使用其热源模型进行了修改,以适应LHW Dedam的振荡激光路径和预热的线原料提供的额外能量输入。热机械模拟。与使用温度依赖性性质的恒定特性在热机械分析中的使用导致明显不同的预测失真,甚至有时甚至可以预测沿相反方向的底物位移。
摘要 金属粉末床熔合 (MPBF) 不是一个独立的工艺,通常需要其他制造技术(例如热处理和表面处理操作)才能获得高质量的组件。 为了优化给定组件的每个单独工艺,必须考虑和了解其在整个工艺链中的进展,这可以通过使用经过验证的模型来实现。 本文旨在概述可用于开发 MPBF 工艺链数字孪生的各种建模技术,包括物理实体和数字实体之间的数据传输方法和不确定性评估。 通过使用技术就绪水平对建模技术的当前成熟度进行评估,以了解其成熟度。总结了 MPBF 研究领域(即预测:粉末变形;温度;材料特性;变形;残余应力;以及拓扑优化)、后处理(即建模:加工;热处理;和表面工程)和数字孪生(即制造过程链的模拟;互操作性和计算性能)中使用的基于物理的建模技术的优点和缺点。还讨论并总结了这些 MPBF 研究领域面临的挑战的未来前景。
本研究考察了孔隙度对髋臼钢焊接件抗疲劳性的影响。进行了文献综述以确定控制含孔隙焊缝疲劳寿命的参数。开发了一个预测模型,结合这些参数来考虑疲劳的开始和扩展。使用该模型检查了四种类型的孔隙度:单孔隙度、均匀孔隙度、共线孔隙度和簇孔隙度。研究并讨论了模型对参数(板厚、应力比、残余应力、孔隙大小和孔隙类型)的敏感性。从 SL-7 负载历史数据开发了可变幅度负载历史,并用于预测实际使用寿命。这项研究的主要结论是,如果焊缝增强层保持完整,那么焊缝中的孔隙度无关紧要。如果去除增强层,孔隙度的类型和大小将控制疲劳寿命。当受到服务清单的影响时,预计焊缝在任何正常设计寿命内都不会失效。最后,结果与美国船级社的船体焊缝无损检测规则相关。从保守的角度来看,该规范是保守的。
研究了直接能量沉积制备的 AlSi10Mg 合金的断裂和拉伸行为。在室温下沿不同裂纹平面方向和载荷方向测试了三点弯曲断裂韧性和拉伸试样。在进行机械加工和测试之前,打印样品在 300 ◦ C 下进行 2 小时的热处理以释放残余应力。进行了微观结构和断口图分析,以研究每种裂纹取向的断裂机制和裂纹扩展路径。在裂纹平面方向上观察到断裂韧性的显著差异。裂纹取向在 XY 方向的试样具有最高的断裂韧性值( J Ic = 11.96 kJ / m 2 ),而 ZY 裂纹取向(垂直于打印方向)具有最低的断裂韧性值( J Ic = 8.91 kJ / m 2 )。断裂韧性的各向异性主要与沿熔池边界的优先裂纹扩展路径有关。在熔池边界处,孔隙优先出现,微观结构变粗,且 Si 含量较高,导致该区域的延展性较差,且抵抗裂纹扩展的能力较差。
镍基高温合金GH3536广泛应用于航空航天工业,具有良好的强度和抗高温氧化性能。本研究采用选区激光熔化 (SLM) 工艺制备GH3536试件,并进行热处理 (HT),研究了SLM和SLM-HT试件的微观组织、残余应力、拉伸强度和硬度。实验结果表明,由于快速冷却,SLM试件处于过饱和固溶状态,残余拉应力沿制备方向周期性地存在于亚表面。热处理后,富钼碳化物从基体中析出,降低了固溶程度。此外,由于热处理,SLM引起的残余拉应力转化为压应力,亚表面残余应力的周期性分布消失。研究结果表明,热处理抑制了SLM试件的固溶强化和晶界强化,导致硬度和屈服强度降低,断裂伸长率增加53%。本研究可为SLM成形GH3536镍基高温合金的应用提供指导。
研究了 Ti 3 SiC 2 基欧姆接触在 p 型 4H-SiC (0001) 4° 偏心衬底上的高温稳定性和可靠性。该接触由高温(900°C 至 1200°C)退火的 Ti 100-x Al x 合金生长而成。室温和高温(高达 600°C)下的特定接触电阻 (SCR) 在 10 -4 -10 -5 Ω.cm 2 范围内。计算出该组样品的肖特基势垒高度为 0.71 至 0.85 eV。在 600°C 下老化 1500 小时后,当 Al 含量 x < 80 at% 时,SCR 非常稳定。这与这些接触的化学和物理稳定性有关,其中老化后 4H-SiC/Ti 3 SiC 2 界面上的残余应力减小,因此 Ti 3 SiC 2 相得以保留。然而,在 x = 80 at% 的情况下,Ti 3 SiC 2 相消失,长时间老化后接触不再具有欧姆性。所得结果表明,Ti 3 SiC 2 /4H- SiC 系统在高温下具有热力学稳定性,因此可以成为高功率和高温电子应用的良好候选材料,具有很高的潜力。
在几种温度下加工后,对基于 CdHgTe 的红外探测器的机械行为进行了评估,以确定热机械负荷对残余应力和可靠性的影响。首先,依靠 SEM、X 射线微层析成像和衍射分析,对探测器的结构进行了全面表征,以便了解所有组成层(特别是铟焊料凸块)的性质、形态和晶体取向。结果特别显示了铟凸块的意外单晶外观,具有可重复的截锥形几何形状。为了获得加工后结构在工作温度范围内(从 430 K 到 100 K)的热机械响应,随后开发了一个 3D 有限元模型。正如预期的那样,数值结果显示,从高温到低温,结构中的应力梯度发生了变化,在 100 K 时,CdHgTe 中的局部高应力约为 30 MPa,这主要是由于不同层之间的热膨胀系数不匹配。它们强调了凸块的几何形状和单晶性质以及不同材料的行为规律的重大影响。
