我们对与太阳能电池组件故障率相关的可用数据进行了深入审查,发现国际可再生能源机构和国际能源机构光伏发电系统于 2016 年完成的《报废管理:太阳能光伏板》报告 2 。该报告汇编了来自全球的多个主题的数据,包括对故障模式和故障率的详细分析。这些数据是本报告预测使用没有重要运行历史的面板(与大多数装置一样)的太阳能装置的故障率和剩余价值的重要基准。分析了光伏板故障的潜在原因,以估计光伏板在达到其估计的报废目标之前成为废品的概率。检测到的三个主要面板故障阶段是:
延长电子产品的使用寿命是可持续设计的一个主要问题。电力电子元件是我们日常服务使用中不断增长的一部分,从笔记本电脑充电器(10-100 W)、家用空调(1-10 kW)、太阳能发电厂(1-100 kW)到铁路电动汽车(1-100 MW)。由于设备体积与额定功率成正比,因此它们大大增加了电子垃圾的产生量。修复转换系统对设计师来说是一个挑战,即系统应该如何设计才能在多年内得到维护。此外,通过电子元件(或子系统)再利用引入循环经济意味着评估电力电子产品的剩余价值。本文首先从现有技术的角度介绍了残值评估,以定义电力电子元件应包括的相关参数(例如:平均故障间隔时间 - MTBF - 多因素函数、元件市场价格评级、内部残值关键材料、内含能量等),并提出了一种估算该值的方法。© 2022 作者。由 ELSEVIER B.V. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由第 32 届 CIRP 设计会议科学委员会负责同行评审
模拟对真实性增强学习(RL)面临着核对模拟和现实世界中的差异的关键挑战,这可能会严重降级剂。一种有希望的方法涉及学习校正以代表残留误差函数的模拟器正向动力学,但是对于高维状态(例如图像),此操作是不切实际的。为了克服这一点,我们提出了Redraw,这是一种潜在的自回归世界模型,在模拟中鉴定在模拟中,并通过剩余的潜在动力学而不是明确观察到的状态对目标环境进行了验证。使用此改编的世界模型,Redraw使RL代理可以通过校正动力学下的想象的推出来优化RL代理,然后在现实世界中部署。在多个基于视觉的Mujoco域和一个物理机器人视线跟踪任务中,重新绘制有效地对动态变化,并避免在传统转移方法失败的低数据方案中过度拟合。
1。限制酶处理(MLS-Coxiv-SMA I)2。丙酮酸钠的临床试验3。开发线粒体疾病的诊断药物(GDF15)4。非侵入性呼吸分析([13 c] -pyr)5。细胞内高还原改善疗法(Loxcat)6。基因组编辑(CRISPR-CAS9)7。新基因疗法(Tale-ddda-ugi)8。GDF15受体(GFRAL)和抗体药物
摘要 —nnUNet 是一个完全自动化且可通用的框架,它可以自动配置应用于分割任务的完整训练管道,同时考虑数据集属性和硬件约束。它利用了一种基本的 UNet 类型架构,该架构在拓扑方面是自配置的。在这项工作中,我们建议通过集成更高级的 UNet 变体(例如残差、密集和初始块)的机制来扩展 nnUNet,从而产生三种新的 nnUNet 变体,即残差-nnUNet、密集-nnUNet 和初始-nnUNet。我们已经在由 20 个目标解剖结构组成的八个数据集上评估了分割性能。我们的结果表明,改变网络架构可能会提高性能,但提高的程度和最佳选择的 nnUNet 变体取决于数据集。索引词 —nnUnet、生物医学图像分割、残差网络、密集网络、初始网络。
阿尔茨海默病 (AD) 是一种脑部疾病,会显著降低患者的记忆和正常行为能力。通过应用多种方法来区分 AD 的不同阶段,神经影像数据已用于提取与 AD 各个阶段相关的不同模式。然而,由于老年人和不同阶段的大脑模式相似,研究人员很难对其进行分类。在本文中,通过添加额外的卷积层对 50 层残差神经网络 (ResNet) 进行了修改,以使提取的特征更加多样化。此外,激活函数 (ReLU) 被替换为 (Leaky ReLU),因为 ReLU 会取其输入的负部分,将其降为零,并保留正部分。这些负输入可能包含有用的特征信息,有助于开发高级判别特征。因此,使用 Leaky ReLU 代替 ReLU 以防止任何潜在的输入信息丢失。为了从头开始训练网络而不遇到过度拟合的问题,我们在完全连接层之前添加了一个 dropout 层。所提出的方法成功地对 AD 的四个阶段进行了分类,准确率为 97.49%,精确度、召回率和 f1 分数为 98%。
利用最佳质量传输 (OMT) 技术将不规则的 3D 脑图像转换为立方体(U-net 算法所需的输入格式),这是医学成像研究的全新思路。我们开发了一个立方体体积测量保留 OMT (V-OMT) 模型来实现这种转换。脑图像中流体衰减反转恢复 (FLAIR) 的对比度增强直方图均衡灰度创建了相应的密度函数。然后,我们提出了一种有效的两相残差 U-net 算法与 V-OMT 算法相结合进行训练和验证。首先,我们使用残差 U-net 和 V-OMT 算法精确预测整个肿瘤 (WT) 区域。其次,我们使用扩张来扩展这个预测的 WT 区域,并通过将与脑图像中 WT 区域相关的阶梯状函数与 5×5×5 模糊张量卷积来创建平滑函数。然后,构建一种具有网格细化的新 V-OMT 算法,使残差 U-net 算法能够有效地训练 Net1-Net3 模型。最后,我们提出集成投票后处理来验证脑图像的最终标签。我们从包含 1251 个样本的脑肿瘤分割 (BraTS) 2021 训练数据集中随机选择了 1000 个和 251 个脑样本,分别用于训练和验证。Net1-Net3 计算的 WT、肿瘤核心 (TC) 和增强肿瘤 (ET) 区域的验证 Dice 分数分别为 0.93705、0.90617 和 0.87470。脑肿瘤检测和分割的准确性显著提高。
我们提出了一种混合量子经典算法来计算二元组合问题的近似解。我们采用浅深度量子电路来实现一个幺正算子和厄米算子,该算子对加权最大割或伊辛汉密尔顿量进行块编码。测量该算子对变分量子态的期望可得出量子系统的变分能量。通过使用归一化梯度下降优化一组角度,该系统被迫向问题汉密尔顿量的基态演化。实验表明,我们的算法在随机全连通图上的表现优于最先进的量子近似优化算法,并通过产生良好的近似解向 D-Wave 量子退火器发起挑战。源代码和数据文件可在 https://github.com/nkuetemeli/UQMaxCutAndIsing 下公开获取。