摘要 —nnUNet 是一个完全自动化且可通用的框架,它可以自动配置应用于分割任务的完整训练管道,同时考虑数据集属性和硬件约束。它利用了一种基本的 UNet 类型架构,该架构在拓扑方面是自配置的。在这项工作中,我们建议通过集成更高级的 UNet 变体(例如残差、密集和初始块)的机制来扩展 nnUNet,从而产生三种新的 nnUNet 变体,即残差-nnUNet、密集-nnUNet 和初始-nnUNet。我们已经在由 20 个目标解剖结构组成的八个数据集上评估了分割性能。我们的结果表明,改变网络架构可能会提高性能,但提高的程度和最佳选择的 nnUNet 变体取决于数据集。索引词 —nnUnet、生物医学图像分割、残差网络、密集网络、初始网络。
主要关键词