fbs 、细胞培养基、缓冲液(Hyclone)■stem细胞介质(Hyclone)■抗冻液、胰蛋白酶,hyrtryp(Hyclone)■HPL(Aventacell)■内毒素业界最低的细胞培养耗材(TPP)■LUNA II II fx7(logos)single(logos)single bioreactor(Getige) (Biosigma)■培养基分析仪(Nova)■Blueswan(蓝光)+塑胶吸管(CAPP)
生物武器已经使用了数千年,但合成技术的最新进展使肽和蛋白质毒素的生产更加容易,并对全球生物安全构成威胁。天然毒素,如芋螺毒素、某些溶血化合物和肠毒素,都是肽类毒剂,可以在生物安全措施薄弱的环境中合成,并初步武器化,用于对较小的目标造成致命或非致命影响。技术进步正在改变生物武器周围的威胁格局,并可能促使威胁从国家支持转向更微观层面,这些威胁源于恐怖组织、内部威胁和孤狼式袭击。在这里,我们向读者概述了肽和蛋白质毒素的威胁,提供了强效肽毒素的例子,并介绍了一项拟议的生物安全计划的能力,该计划利用人工智能将商业核苷酸和肽合成供应商联合起来。
农业中的霉菌毒素管理是维护动物和人类健康的重要挑战。选择合适的吸附剂仍然是许多饲养者的问题,也是饲料制造商的重要标准。人们仍在寻找新的吸附剂。氧化石墨烯是纳米技术领域一种很有前途的材料,其吸附性能优异。体外研究调查了氧化石墨烯对碎小麦中霉菌毒素的结合。结果表明,在 37˚C 下,氧化石墨烯对黄曲霉毒素 0.045 mg/g、玉米赤霉烯酮 0.53 mg/g 和脱氧雪腐镰刀菌烯醇 1.69 mg/g 的吸附能力。碎小麦消化的体外模拟显示在胃期吸附迅速。在矿物质中,Mg、Cu 和 Zn 的吸附量最多。 10 mg/g 剂量的氧化石墨烯对消化酶 α-淀粉酶和胰蛋白酶的抑制作用与胃蛋白酶和胃脂肪酶相比仅有轻微抑制。体外结果表明氧化石墨烯适合吸附黄曲霉毒素、玉米赤霉烯酮和脱氧雪腐镰刀菌烯醇。
https://doi.org/10.26434/chemrxiv-2025-qj8f5 orcid:https://orcid.org/0000-0001-9193-9193-9053 consemrxiv note content content contemrxiv contem许可证:CC由4.0
摘要玉米象鼻虫(Sitophilus Zeamais)是储存过程中玉米种子最具破坏性的害虫之一。象鼻虫可能是霉菌毒素真菌或酵母菌污染种子批次的载体。在这项研究中,从储存的玉米种子中发现的玉米象鼻虫中分离出一种未知的酵母菌。我们认为,这种酵母具有抗真菌活性,从而抑制了玉米种子中霉菌毒素的生长。使用形态和分子测定的组合,将酵母菌物种鉴定为burtonii的杂化物,并针对三种已知的已知的霉菌毒素真菌,fusarium fusarium verticillioides,Aspergillus niger and A. fl avus评估了其潜在的抑制活性。筛查酵母分离株的拮抗活性显示出50 - 69%的菌落生长在酵母上散布在PDA上时的三种真菌,但在双重培养物中只有轻微的抑制(5.8 - 13.7%的生长抑制)。分别在57 - 96%和29-40%的散发板和双重培养测定中,孢子形成的孢子形成。此外,挥发性和非静脉曲张的部分也显示出菌丝体的生长降低。可变反应。进一步的研究将在降低真菌生长和孢子形成以及可能缓解玉米谷物中的霉菌毒素结合的潜在利用中很有趣。据我们所知,这是从分别,特定的Cally S. Zeamais分离出的H. burtonii的第一个记录。
摘要伤寒毒素是伤寒沙门氏菌(人类伤寒的病因)的重要毒力因子。这种毒素具有不寻常的生物学特性,因为它仅在宿主细胞内时才由伤寒沙门氏菌产生。一旦合成,毒素就会分泌到含有沙门氏菌的液泡腔中,然后通过囊泡载体中间体将其运输到细胞外空间。在这里,我们报告了伤寒毒素分选受体和细胞机制成分的鉴定,这些细胞机制将毒素包装到囊泡载体中并将其输出到细胞外空间。我们发现阳离子非依赖性甘露糖-6-磷酸受体充当伤寒毒素分选受体,并且外壳蛋白 COPII 和 GTPase Sar1 介导其包装到囊泡载体中。伤寒毒素携带者的形成需要伤寒沙门氏菌所含液泡的特定环境,而该环境由其 III 型蛋白分泌系统的特定效应物的活动决定。我们还发现 Rab11B 及其相互作用蛋白 Rip11 控制伤寒毒素携带者的细胞内运输,以及 SNARE 蛋白 VAMP7、SNAP23 和 Syntaxin 4 控制其与质膜的融合。伤寒毒素选择特定的细胞机制将其运输到细胞外空间,这说明了外毒素在细胞内病原体环境中发挥其功能的显著适应性。
摘要:自行车毒素缀合物(BTC)是一种有希望的新的分子,用于靶向毒素有效载荷到肿瘤中。在本文中,我们描述了BT8009的发现,BT8009是目前正在临床评估中的Nectin-4靶向BTC。nectin-4在多种肿瘤类型中过表达,是选择性递送细胞毒性有效载荷的临床验证目标。通过噬菌体显示鉴定了靶向双环肽的nectin-4,该噬菌体表现出对Nectin-4的高度选择性结合,但血浆稳定性低,并且物理化学特性较差。多参数化学优化涉及引入非天然氨基酸的化学优化,导致铅自行车表现出对Nectin-4的高亲和力,生物矩阵中的良好稳定性以及备受改善的物理化学谱。通过可裂解的连接器将优化的自行车缀合至细胞毒素单甲基氨基氨基蛋白E,以提供靶向的药物结合物BT8009,这在体内啮齿动物模型中表现出有效的抗癌活性。■简介
广泛的害虫,主要是鳞翅目(毛毛虫),双翅目(蚊子和黑蝇)和鞘翅目(甲虫幼虫)(Sanchis 2011)。bt的特征是在孢子形成过程中生产,内毒素蛋白(称为哭泣的蛋白),这些蛋白会积聚并形成晶体包含体。昆虫必须消耗/摄取这些哭泣的蛋白质,才能感受到其作用,直到昆虫死亡。在摄入后,昆虫中肠内的碱性条件会导致晶体的溶解化,从而将其转化为有毒的核心碎片(Sansinenea 2019)。这些有毒蛋白与位于昆虫中肠上皮细胞上的受体(糖蛋白或糖蛋白)结合(Bravo等人2011)。结合后,毒素会改变其构象,从而使其插入细胞膜并形成阳离子选择通道(Bravo等。2013)。当形成足够的这些通道时,几个阳离子进入了细胞。这会导致细胞内部的渗透不平衡,从而导致中肠上皮完整性的丧失。这使碱性肠道果汁和细菌可以通过中肠地下膜,杀死昆虫。当用作喷雾剂时,这些毒素无效地防止昆虫攻击植物的根或植物的内部部分(Sanahuja等人。2011)。这些局限性引发了人们对开发新的遗传修饰植物和细菌表达哭泣和其他BT-杀虫基因的兴趣,以便提供更有效的毒素递送系统来控制这些昆虫(Azizoglu和Karabörklü2021)。2021; Lazarte等。在生物技术技术(例如基因工程)中的持续进展,具有计算生物学的能力,导致了有关BT的发展和发现。在这种情况下,全球各个研究小组对寻找具有新的抑制活性范围和高水平的毒性毒素的新型哭泣毒素非常感兴趣,这是针对虫害的一种替代品,这种毒性毒性具有更高的抗药性水平(Hou等人 2019; Crickmore等。 2021)。 结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。 2017; Azizoglu等。 2020)。 今天的新一代方法,例如模拟和动态研究,2019; Crickmore等。2021)。结果,使用术基因组数据,遗传修饰(GM)微生物的发展的持续菌株改善正在成为不可避免的能够实现非本地基因表达和改善本机生产国以发展遗传学改善菌株的工具包(Liu等人(Liu等)(Liu等人。2017; Azizoglu等。2020)。今天的新一代方法,例如模拟和动态研究,
1。Galicia-Garcia U,Benito-Vicente A,Jebari S,Larrea-Sebal A,Siddiqi H,Uribe KB等。2型糖尿病的病理生理学。国际分子科学杂志。2020; 21(17):6275。2。Firmin S,Bahi-Jaber N,Abdennebi-Najar L.食品污染物和2型糖尿病的编程:动物研究的最新发现。健康与疾病发育起源杂志。2016; 7(5):505-12。 3。 IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2016; 7(5):505-12。3。IQBAL SZ。 食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。 食品科学中的当前意见。 2021; 42:237-47。 4。 dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。 食物和化学毒理学。 2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。IQBAL SZ。食品中的霉菌毒素,食品分析的最新发展以及未来的挑战;评论。食品科学中的当前意见。2021; 42:237-47。4。dai Y,Huang K,Zhang B,Zhu L,Xu W.黄曲霉毒素B1诱导的表观遗传改变:概述。食物和化学毒理学。2017; 109:683-9。 5。 Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。2017; 109:683-9。5。Wang C,Li Y,Zhao Q. 基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。 生物传感器和生物电子学。 2019; 144:111641。 6。 min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。 哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。 动物营养。 2021; 7(1):42-8。 7。 fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。 毒素(巴塞尔)。 2019; 11(3)。 8。 危险材料杂志。Wang C,Li Y,Zhao Q.基于与互补DNA的竞争,用于快速检测黄曲霉毒素B1的信号电化学适时性。生物传感器和生物电子学。2019; 144:111641。6。min L,Fink-Gremmels J,Li D,Tong X,Tang J,Nan X等。哺乳奶牛中黄曲霉毒素B1生物转化和黄曲霉毒素M1分泌的概述。动物营养。2021; 7(1):42-8。7。fouad AM,Ruan D,El-Senousey HK,Chen W,Jiang S,ZhengC。曲霉素B的有害效果和控制策略由Aspergillus flavus和parassiticus菌株在家禽上产生:审查。毒素(巴塞尔)。2019; 11(3)。 8。 危险材料杂志。2019; 11(3)。8。危险材料杂志。Park S,Lee J-Y,You S,Song G,Lim W.黄曲霉毒素B1在体外对人类星形胶质细胞的神经毒性作用和体内斑马鱼的神经胶质细胞发育。2020; 386:121639。9。Kadhum GM,Al_jumaili SA,Al_hashemi Ha。研究黄曲霉毒素B1在糖尿病2型患者血液中的研究。艾滋病毒护理。2022; 22(2):3632–4- – 4。10。Abd al-Redha S,Falah Z,Ahmed F,Falah G,Hasson A.对血液中的尾毒素A及其与癌症疾病的关系进行了研究。2017。11。Abdullah Har,Aljumaili Sar。调查卡尔巴拉省人血液中patulin的调查。2018。12。Singhal SS,Saxena M,Awasthi S,Ahmad H,Sharma R,Awasthi YC。性别相关的人类结肠谷胱甘肽S-转移酶的表达和特征的差异。Biochimica et Biophysica Acta(BBA) - 晶状结构和表达。1992; 1171(1):19-26。 13。 Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。 黄曲霉毒素B1的发生,检测和毒理学作用。 2019。1992; 1171(1):19-26。13。Lalah Jo,Omwoma S,Orony D.黄曲霉毒素B1:肯尼亚人类的化学,环境和饮食来源以及潜在的暴露。黄曲霉毒素B1的发生,检测和毒理学作用。2019。
1 码头调查研究所。Unidad Asociada de Fitoplancton Tóxico (CSIC-IEO)。Vigo 2 Laboratorio de Sanidad 外观。领土政治和公共行政部。Vigo pilar.riobo@vi.ieo.es 目录 1.摘要 2.亲水性毒素:2.1。PSP 毒素:STX 2.2 组。ASP 毒素:多莫酸 3.亲脂性毒素 3.1 一般提取程序 3.2 DSP 毒素:冈田酸组 3.3 AZP:Azaspiracids 3.4 海葵毒素 3.5 雪卡毒素 3.6 NSP:短藻毒素 4. div>尚未证实对人类有影响的脂溶性毒素 4.1 YTX 组 4.2 PTX 组 4.3 环状亚胺组:Espirolids、Gymnodimines、Pinnatoxins 和 Pteriatoxins 5.结论 6.< div> 致谢 7.参考文献 1.摘要 藻毒素是海洋生物合成的天然产物微藻,尤其是属于甲藻类的微藻。目前已知约有 20 种甲藻和少量硅藻会产生藻毒素,这些藻类占所有微藻种类的不到 2%。众所周知,它们会在从热带到极地纬度的整个食物链中产生中毒综合症 (Hallegraeff, 1993)。海洋生物毒素是结构差异很大的非蛋白质化合物,其分子量介于250-3500道尔顿。它们的物理化学性质根据其极性、亲脂性、热稳定性、对pH、氧气和光的敏感性等而变化。生物毒素中毒的危险对人类的影响在于其急性和慢性影响。食用受海洋生物毒素污染的海鲜可能会导致严重疾病,影响:麻痹性贝类中毒 (PSP) 中的神经系统、腹泻性贝类中毒 (DSP) 中的肠道系统以及失忆性贝类中的记忆丧失中毒(ASP)。在多个国家的海鲜中发现的其他知名毒素是短尾藻毒素 (BTX)、雪卡毒素 (CTX)、海葵毒素 (PLTX) 和河豚毒素 (TTX)。它们的作用方式尚不清楚,(Hu 等人,2001;Miles 等人,