多态毒素是细菌战争的武器,用于限制竞争对手、帮助亲属选择和塑造细菌群落。多态毒素系统 (PTS) 在革兰氏阴性细菌中得到了充分研究,但对革兰氏阳性细菌的研究有限。在枯草芽孢杆菌中,已报道了几种毒素免疫蛋白对,包括 YeeF-YezG、YobL-Y、obK YxiD- YxxD。很少有研究描述这些毒素-免疫对的结构/机制细节。这种毒素需要 VII 型分泌系统。我们已经证明 YeeF 的 C 端结构域 (YeeF-CT) 含有具有 DNase 活性的毒素。YeeF-CT 的表达会导致大肠杆菌的生长缺陷并导致形态变化。而毒素-免疫对的共表达可恢复正常的细菌生长。在这里,我们报告了 YeeF-CT 与其同源抗毒素 YezG 结合的晶体结构,分辨率为 2.1 Å。晶体结构表明,毒素 (YeeF-CT) 在与其同源免疫蛋白 (YezG) 结合后会发生重大构象变化。比较结构分析表明,毒素的六个 β 片层(核酸酶活性所必需的)在与免疫蛋白结合后被撕裂成两个子域。这种机制不同于其他 II 型毒素-抗毒素系统,其中抗毒素的内在无序区域与毒素的活性位点结合,从而在空间上阻断其底物的结合。我们目前正在研究这种毒素-免疫蛋白对的结构指导详细表征。
简介小麦(面包小麦)(Triticum Aestivum L.)是世界贸易中主要的农产品之一,代表了人类和动物消费的主要要求。它必须满足日益增长的需求,随着世界人口的增加,到2050年达到90亿以上[1],全球小麦的产量每年约为7.15亿吨,在玉米之后的消费中排名第二,在玉米中排名第二(每年10亿吨/每年),霉菌的增长是微生物杂物和储存过程中最常见的货物质量的最常见原因之一,它们可能会增加货物的差异,而货物的差异可能会造成货物的差异,而货物的差异可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的差异,而又可能会造成货物的损失,那么它们的差异是造成的,而货物的差异可能会造成货物的差异。感染并增加霉菌毒素的积累[2]。真菌是最重要的生物之一,因为首选酶在细胞之外。有许多研究表明,被称为霉菌毒素的二级代谢产物被认为是砂筒仓颗粒损伤的主要原因,可能导致中毒食物和动物饲料[3]。真菌霉菌毒素通过谷物中的购物中心传递到面粉中心。此过程将将霉菌毒素浓度水平提高到高于可接受的极限。[4],黄曲霉毒素B1是最危险的肾上腺毒素类型之一,被认为是人类和动物的强癌[5],真菌(例如,apergillus spp。,penicillium spp。fusarium spp。)和细菌(例如,沙门氏菌蜡状芽孢杆菌)污染了面粉,它们的产物可能引起许多疾病[6]。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年4月3日发布。 https://doi.org/10.1101/2023.10.04.560852 doi:Biorxiv Preprint
摘要:丝状真菌能够合成一系列的二级代谢产物,这些代谢物在真菌与其他生物圈之间的相互作用中起各种关键作用,从而终止其生态效果。其中许多人可能会有一种有益的活动可以被利用,以及对人类和动物健康的负面影响,就像霉菌毒素污染了全球大量食品,饲料,饲料和农产品,并带来严重的健康和经济风险。由于下一代测序技术的出现,在过去十年中,霉菌毒素生物合成的分子方面已经大大加快了,这大大降低了基因组测序的成本和相关的杂音分析。在这里,我们高度阐明了OMIC方法的使用和整合用于研究霉菌毒素生物合成的最新进展。特别关注基因组学和转录方法方法,用于鉴定和表征霉菌毒素的生物合成基因簇以及对响应生理和环境因素激活的调节途径的理解。基因组编辑技术的最新创新也为完整解释调节和生物合成途径提供了更强大的工具。最后,我们解决了关于霉菌真菌生物学的组合数据的解释的关键问题。他们正在迅速扩展,需要开发资源,以实现更有效率的整合,以及研究界相互交织的数据的完整性和可用性。
摘要 当细菌细胞接触时,通常会通过毒素传递介导拮抗作用。此类接触对受体细胞产生长期有益影响的可能性尚未得到研究。在这里,我们研究了 DddA 中毒的影响,DddA 是一种胞嘧啶脱氨酶,通过伯克霍尔德菌的 VI 型分泌系统 (T6SS) 传递。尽管 DddA 具有杀灭潜力,但我们观察到几种细菌对 DddA 有抵抗力,反而会积累突变。这些突变可导致获得抗生素耐药性,这表明即使在没有杀灭的情况下,细菌间拮抗作用也会对目标群体产生深远影响。对脱氨酶超家族中其他毒素的研究表明,诱变活性是这些蛋白质的共同特征,包括我们展示的代表性毒素,它以单链 DNA 为目标,并显示出明显不同的结构。我们的研究结果表明,细菌间拮抗相互作用的一个令人惊讶的结果可能是通过直接诱变毒素的作用促进适应。
DBT-NIAB 科学家研究印度奶牛以获取治疗结核病的药物 结核病 (TB) 是全球主要死亡原因之一。2018 年全球约有 1000 万新发病例和 150 万人死亡。它是艾滋病毒感染者的主要杀手,也是与抗菌素耐药性 (AMR) 相关死亡的主要原因。印度是该病负担最重的国家,估计发病率约为 269 万例。据报道,相当一部分人类结核病是由牛分枝杆菌引起的,牛分枝杆菌是牛结核病 (牛结核病或 BTB) 的主要病原菌。换句话说,牛是人畜共患结核病的主要宿主。更糟糕的是,牛的结核病也是由人类结核杆菌 M. Tuberculosis 引起的。由于多种原因,牛结核病和人畜共患结核病对印度的健康提出了独特的挑战。
摘要。收音机和手机使用振荡载体信号的频率调制(FM)来可靠地传输多路复用数据,同时拒绝噪声。在这里,我们使用遗传编码的蛋白振荡器(GEOS)作为电路中的载波信号来建立该范式的生化类似物,以实现单细胞数据的连续实时FM流。GEOS是由进化多样的思想家庭ATPase和激活因子模块构建的,这些模块在人类细胞中共表达时会产生快速的合成蛋白振荡。这些振荡用作单细胞载体信号,频率和振幅由GEO组件水平和活动控制。我们系统地表征了169个ATPase/Activator Geo对和具有多个竞争激活剂的工程师复合GEO,以开发一个用于波形编程的全面平台。使用这些原理,我们设计了对细胞活性调节地理频率的电路,并使用校准的机器学习模型解码其响应,以证明单个单元中转录和蛋白酶体降解动力学的敏感,实时FM流。GEOS建立一个动态控制的生化载体信号,解锁抗噪声的FM数据编码范式,为动态单细胞分析开辟了新的途径。简介。细胞动态调节不同时间尺度的基因表达,蛋白质定位和信号传导状态,以执行必不可少的生物学功能1-4。虽然基因组,转录组和蛋白质组学方法可以提供单细胞态5-8的快照,但实时遵循单个细胞的轨迹的能力对于理解动态细胞和生物体行为如何编码和功能1,9,10至关重要。这些单细胞动力学通常是使用荧光记者在显微镜下进行跟踪的,其强度或定位为您感兴趣的数据提供了代理10-16。虽然功能强大,但这些工具对扩展单细胞动力学和数据聚合的扩展跟踪构成了挑战,因为任意信号强度在仪器上各不相同,并且对光漂白和噪声17敏感。此外,传统基于荧光的工具生成的信号缺少元数据来识别信号的基本细胞来源,从而使密集的细胞环境中重叠信号的分离变得困难。
与其他几种NP变体不同,IO NP可以借助EMF引导到肿瘤部位,而无需固定靶向剂,例如肽,适体,蛋白质或抗体。但是,类似于其他NP类型,至关重要的是要覆盖IO NP的裸露表面(例如,使用聚合物或细胞膜)来防止调子化和聚集,并逃避巨噬细胞的吸收,以便它们可以到达肿瘤部位(图1A)[2]。使用IO NPS采用MDT有两种策略:直接与IO NP的药物共轭或与IO NP共同负载的DDS的药物共轭。使用IO NP,其他参数,例如血流速率,NPS的表面电荷或其尺寸也可能对NP的最终积累产生显着影响,而磁场强度在MDT中起关键作用。磁场梯度可能导致IO NP向最强磁力(F)的区域移动,如公式(4)[3]:
摘要:将化疗药物特异性地递送至癌细胞可提高肿瘤局部药物剂量,从而杀死更多癌细胞,同时减少对其他组织的副作用,进而改善肿瘤学和生活质量。立方体是一种液晶脂质纳米颗粒,是递送化疗药物的潜在载体,具有生物相容性、稳定封装和疏水性或亲水性药物高载药量等优势。然而,与被动积累相比,载药立方体主动靶向癌细胞仍相对未被充分探索。我们配制并表征了装载潜在抗癌药物铜乙酰丙酮的立方体,并使用点击化学偶联透明质酸 (HA)(细胞表面受体 CD44 的配体)对其表面进行功能化。CD44 在包括乳腺癌和结直肠癌在内的多种癌症类型中过度表达。 HA 标记、载有铜乙酰丙酮的立方体的平均流体动力学直径为 152 nm,内部纳米结构基于空间群 Im3m。这些立方体被两种表达 CD44 的癌细胞系(MDA-MB-231 和 HT29,代表乳腺癌和结肠癌)有效吸收,但未被两种 CD44 阴性细胞系(MCF-7 乳腺癌和 HEK-293 肾细胞)吸收。HA 标记的立方体在 CD44 阳性细胞中引起的细胞死亡明显多于未靶向的立方体,证明了靶向的价值。CD44 阴性细胞对两者的相对抵抗力相同,证明了靶向的特异性。细胞死亡被描述为凋亡。在 2D 培养和 3D 球体中均明显存在特异性靶向和细胞死亡。我们得出结论,HA 标记、载有铜乙酰丙酮的立方体具有作为选择性靶向表达 CD44 的肿瘤的有效治疗方法的巨大潜力。关键词:立方体、CD44 受体、透明质酸、液晶脂质纳米颗粒、肿瘤球体 ■ 简介
抗体药物偶联物 (ADC) 正迅速成为靶向治疗的基石,尤其是用于治疗癌症。目前,FDA 已批准 12 种 ADC,其中 8 种是在过去五年内批准的,还有许多候选药物处于临床试验阶段。ADC 的良好临床前景不仅促进了新型偶联技术的开发,还促进了抗体形式、连接子和有效载荷的开发。虽然目前批准的大多数 ADC 依赖于细胞毒性小分子弹头,但新型有效载荷和非经典抗体形式所带来的替代作用模式正在引起人们的关注。在这篇综述中,我们总结了 ADC 技术的现状,并全面研究了替代有效载荷,例如毒性蛋白、细胞因子、PROTAC 和寡核苷酸,并强调了多特异性抗体形式作为下一代治疗性抗体偶联物的潜力。