对于NISQ超导量子计算机来说,量子比特映射对于保真度和资源利用率至关重要。现有的量子比特映射方案面临诸如串扰、SWAP开销、设备拓扑多样等挑战,导致量子比特资源利用不足和计算结果保真度较低。本文介绍了一种解决这些挑战的新型量子比特映射方案QuCloud+。QuCloud+有几项新的设计。(1)QuCloud+支持2D/3D拓扑量子芯片上的单/多程序量子计算。(2)QuCloud+利用串扰感知社区检测技术对并发量子程序的物理量子比特进行分区,并进一步根据量子比特度数分配量子比特,提高保真度和资源利用率。(3)QuCloud+包含X-SWAP机制,可避免串扰误差较大的SWAP,并支持程序间SWAP以降低SWAP开销。 (4) QuCloud+根据最佳实践的保真度估计来调度要映射和执行的并发量子程序。实验结果表明,与现有的典型多道程序研究[12]相比,QuCloud+可实现高达9.03%的保真度提升,并节省映射过程中所需的SWAP,减少插入的CNOT门数量40.92%。与最近的一项研究[30]相比,该研究通过映射后门优化进一步减少门数量,在使用相似门数量的情况下,QuCloud+将映射后的电路深度减少了21.91%。
20 世纪 90 年代,John Arquilla 和 David Ronfeldt 合作撰写了一系列影响深远的文章,提出了网络战、群集战术和网络战的概念。他借鉴信息时代之前的历史类比,阐明了信息优势将如何对未来战争产生至关重要的影响。如今,一些高级领导人将这一概念誉为战略成功的核心。在《比特战争》一书中,这位美国海军研究生院名誉教授再次从历史中汲取灵感,展望冲突的演变。他拥有丰富的经验,在过去 30 年里有幸见证并影响了美国的战略决策。在他的书中,Arquilla 为不断增加云计算和强加密的使用提供了战略背景,并阐述了网络军备控制协议的新方法。他的工作对整个网络领域的从业者和领导者都有启发。评论
控制量子位的状态涉及操纵其量子态以执行所需的操作。这种操纵通常涉及应用量子门序列 [3],它们类似于经典逻辑门,但作用于量子态 [4]。这些门可以确定性地改变量子位的状态,从而产生叠加和纠缠,以及计算所需的其他量子操作。测量量子位的状态涉及确定其在特定时刻的量子态。量子位耦合到位于其物理位置附近的微波谐振器。正是通过这些谐振器,可以确定或“读出”量子位的状态。确定量子位状态的一种常用技术是色散读出法 [5]。该方法利用了这样一个事实:量子位的状态对读出谐振器的某些宏观参数(例如其谐振频率)有直接影响。
获得了局部酉变换下酉量子比特信道的标准形式。具体而言,证明了酉量子信道的 Choi 矩阵的特征值形成标准形式的一组完整的不变量。由此立即可知,每个酉量子比特信道都是四个酉信道的平均值。更一般地,只要 2(p 1 , . . . , pm ) 由信道 Choi 矩阵的特征值向量优化,酉量子比特信道就可以表示为具有凸系数 p 1 , . . . , pm 的酉信道的凸组合。标准形式的酉量子比特信道会将 Bloch 球面变换到椭圆体上。我们研究了将 Bloch 球面发送到相应椭圆体的自然线性映射的详细结构。
产生大规模纠缠的能力是嘈杂中型量子 (NISQ) 设备中量子信息处理能力的重要前身。本文研究了在当前超导量子设备上准备大量量子比特纠缠量子态的程度。准备了 IBM Quantum 65 量子比特 ibmq_manhattan 设备和 53 量子比特 ibmq_rochester 设备上的原生图状态,并应用了量子读出误差缓解 (QREM)。检测到了跨越每个完整设备的连通纠缠图,表明每个设备的整体都存在二分纠缠。结果表明,QREM 的应用增加了所有测量中观察到的纠缠,特别是,在 ibmq_rochester 中发现的量子比特纠缠对的数量从总共 58 个连通对中的 31 个增加到 56 个。这项研究的结果表明,迄今为止最大的两个超导装置中存在完全的二分纠缠。
N. Didier 等人,从纵向量子比特振荡器相互作用实现快速量子非破坏性读出,PRL 115, 203601 (2015) P.-M. Billangeon 等人,基于电路 QED 的可扩展架构,用于使用超导量子比特进行量子信息处理 PRB 91, 094517 (2015)
假设我们有两个量子比特。如果这是两个经典比特,那么将有四种可能的状态,即 00、01、10 和 11。相应地,两个量子比特系统有四个计算基础状态,分别表示为 |00 ⟩ 、|01 ⟩ 、|10 ⟩ 、|11 ⟩ 。一对量子比特也可以存在于这四种状态的叠加中,因此两个量子比特的量子态涉及将一个复系数(有时称为振幅)与每个计算基础状态相关联,这样描述两个量子比特的状态向量就是
量子计算依赖于开发能够抵抗汉密尔顿量中微小且不受控制的参数变化的量子设备。人们可以通过实时估计这种不受控制的变化来应用反馈,以稳定量子设备并提高其相干性。这项任务对于许多量子平台(如自旋、超导电路、捕获原子和其他用于抑制或纠正错误的平台)都很重要。半导体自旋量子比特具有长相干时间、紧凑尺寸以及与现有半导体技术大规模集成的潜力,因此具有吸引力。然而,到目前为止,自旋量子比特凭借所选设备的高保真操作而大放异彩。进一步的可扩展性和可重复性可能需要主动补偿环境波动。在本论文中,我们专注于实时闭环反馈协议,以估计量子比特汉密尔顿量参数的不受控制的波动,然后提高量子比特旋转的质量。首先,我们使用低延迟量子控制器相干地控制自旋量子比特。该协议使用在砷化镓双量子点中实现的单重态-三重态自旋量子比特。我们在两个控制轴上建立实时反馈,并提高相干自旋旋转的最终品质因数。即使汉密尔顿量的某些分量完全受噪声控制,我们也展示了噪声驱动的相干控制。作为一种应用,我们在两个波动的控制轴存在的情况下实现了 Hadamard 旋转。接下来,我们提出了一种基于物理的实时汉密尔顿估计协议。我们通过根据福克-普朗克方程更新其概率分布来实时估计双点内波动的核场梯度。我们通过基于先前的测量结果自适应地选择电子单重态对的自由演化时间,进一步改进了基于物理的协议。与以前的方案相比,该协议将估计速度提高了十倍。最后,我们提出了一种自适应频率二进制搜索方案,用于有效跟踪共振驱动量子比特中的低频波动。我们实时地实施贝叶斯算法来估计磁通可调的 transmon 量子比特中的低频磁通噪声,其相干性和保真度得到了改善。此外,我们通过门集层析成像显示,我们的频率跟踪协议最大限度地减少了系统中的漂移量。我们的方法引入了闭环反馈方案,旨在减轻退相干的影响并延长量子系统的寿命。这篇论文推动了该领域的发展,即集成量子比特硬件和控制硬件,并实施计算机科学中的贝叶斯估计和优化方法。
过去几年,量子计算已从一门学术学科转变为一个吸引业界和政府极大兴趣和投资的领域。超导量子比特电路的优势在于,它几乎完全采用硅基铝(或蓝宝石)技术制成,现已扩展到 100 个量子比特。该领域的这种凝聚力使技术得到了显著改进,现在可以制造可重复的大规模电路,尽管量子处理器的复杂性很高,但该社区仍能逐渐将量子比特相干时间延长到 100 微秒以上。近年来,一些用于辅助电路的新材料(如钽)已经出现,即使目前质量最好的量子比特约瑟夫森结仍然完全采用铝技术制造,也能产生具有更高相干性的量子比特。目前,缺乏可用于直接关联所用材料和由此产生的量子比特相干性的计量工具和方法,这意味着在理解是什么限制了超导量子比特的相干性方面存在巨大差距。为什么某些材料更好尚不清楚,因此需要新的测量技术来了解量子层面的材料特性,并需要更精确地比较量子比特的性能。