2 连接至控制阀 – 安装零件和附件 ...13 2.1 直接连接 ..........................16 2.1.1 3277-5 型执行器。........................16 2.1.2 3277 型执行器。..........................18 2.2 符合 IEC 60534-6 的连接 ...................20 2.3 连接至 3510 型微流量阀。.............22 2.4 连接至旋转执行器 ...................24 2.5 双作用执行器反向放大器 .............26 2.6 连接外部位置传感器 .......。。。。。。。。..28 2.6.1 使用直接附件安装位置传感器。.........28 2.6.2 使用符合 IEC 60534-6 标准的附件安装位置传感器 30 2.6.3 将位置传感器安装到 3510 型微流量阀上。.....31 2.6.4 将位置传感器安装到旋转执行器上 ............32
2 连接至控制阀 – 安装零件和附件 ...14 2.1 直接连接 ..........................18 2.1.1 3277-5 型执行器。........................18 2.1.2 3277 型执行器。..........................20 2.2 符合 IEC 60534-6 的连接 ...................22 2.3 连接至 3510 型微流量阀。..............24 2.4 连接至旋转执行器 ...................26 2.5 双作用执行器换向放大器 ............28 2.5.1 压力表附件 ......................28 2.6 连接外部位置传感器 ..................30 2.6.1 使用直接附件安装位置传感器。...........30 2.6.2 按照 IEC 60534-6 使用附件安装位置传感器 32 2.6.3 将位置传感器安装到 3510 型微流量阀上 ......33 2.6.4 将位置传感器安装到旋转执行器上 ...........34 2.7 将定位器与不锈钢外壳连接起来。...........36 2.8 单作用执行器的空气净化功能 ............36
风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
摘要:本文全面综述了飞机静态气动弹性效应预测与修正方法的研究进展,包括气动弹性的损伤与防护等。相似条件的确定和静态气动弹性缩放建模对于获得准确的气动特性具有重要的风洞试验意义。同时,相似的刚度分布、制造材料和加工工艺与飞机结构动力学模拟密切相关。详细描述了静态气动弹性模型的结构布局,包括板式、梁式、轴承蒙皮式和全结构相似式。此外,风洞和试验技术在静态气动弹性试验中也起着重要作用。值得注意的是,计算流体动力学(CFD)和计算结构动力学(CSD)在流场气动弹性分析中的应用越来越受到研究者的重视。详细介绍了飞机气动弹性数值模拟的研究现状和关键技术。另外,本文还简要介绍了静态气动弹性预测与修正方法,特别是目前应用广泛的K值法。
摘要 软机器人因其固有的柔软性和柔顺性而受到越来越多的关注。然而,要充分发挥其潜力,通常需要许多软部件和执行器。大型系统面临的一个主要挑战是集成和小型化。此外,对于气动控制的执行器,多路复用对于减少控制阀的管道至关重要。通过在软材料 (PDMS) 中嵌入两层交互式通道 (2 n ) 来形成执行器 (n 2 ),通过在通道交叉点处累积行程和力,实现了仅通过 2 n 个控制信号对 n 2 个交叉点进行多路复用控制的小型化软气动执行器矩阵 (SPAM),这与产生恒定力的基于活塞的串联耦合气弹簧不同。研究了一种具有 2×4 个控制信号的 4×4 执行器的 SPAM 原型。在倾斜矩阵中演示了 SPAM,并在气动软传送带中使用两个耦合的 SPAM 进行平面操作。它的简单性和尺寸使其未来能够大规模集成到软机器人中。
摘要:跨介质飞行器是一种既能在水中潜航,又能在空中飞行的新型概念飞行器。本文基于多旋翼无人机入出水结构模型,设计了一种新型水空多介质跨介质飞行器。基于设计的跨介质飞行器结构模型,利用OpenFOAM开源数值平台进行单介质气动特性分析和多介质跨介质流动分析。采用滑移网格计算单介质空气旋翼和水下螺旋桨的旋转流动特性。为防止网格运动变形引起的数值发散,采用重叠网格法和多相流技术对跨介质飞行器入出水进行数值模拟。通过以上分析,验证了跨介质车辆在不同介质中的流场特性,并得到了跨介质过程中不同入水角度下车体载荷及姿态的变化情况。
摘要:目的。本研究旨在检验两种手持式肺量计和基于肺活量仪的系统在肺活量和派生发声商测量方面的平行形式信度。研究设计。这是一个前瞻性、重复测量设计。方法。共 20 名成年男性使用三种空气动力学仪器(Baseline 风车式肺量计、Contec SP10 数字肺量计和 Pentax Medical Phonatory 空气动力学系统 (PAS),型号 6600)进行肺活量测量。使用每种仪器的肺活量以及最大发声时间计算发声商。进行重复测量协方差分析 (ANCOVA) 以检验仪器对肺活量和发声商的主要影响,以年龄为协变量。进行皮尔逊积差相关以评估仪器之间的测量信度。结果。数字肺活量计与风车肺活量计和 PAS 相比,ANCOVA 在肺活量测量方面存在统计学显著差异。在发声商方面,任何仪器之间均未发现差异。在肺活量和发声商测量方面,这三种仪器之间存在很大的正相关性。结论。在三种仪器系统中,肺活量和派生发声商的测量具有很强的平行形式可靠性,尽管测量预
abled驱动器和残疾驱动程序之间的区别将消失。基于脑电图(EEG)信号的驱动器 - 车辆界面(DVI)将这些信号转换为与驱动相关的命令[5]。天津南卡大学的中国工程师已经开发了一个可以读取大脑信号并相应控制汽车的系统。 在论文[6]中,被认为是开发出对脑部残疾人非常有帮助的脑驱动汽车。 汽车可用于人工智能的异步机理。 几篇论文[7-8]考虑了开发基于脑电图的脑控制的汽车,该汽车可以被身体残疾人使用。 同时考虑了不同神经相互作用模式的各种大脑状态。 大脑模式的特征是不同的脑波频率,例如 β波在12至30 Hz之间与浓度有关,而8至12 Hz之间的α波与放松和精神平静的状态有关[9]。 头部肌肉的收缩也与独特的波模式有关,隔离这些模式是一种检测驾驶员情绪状态的方法[10]。 驾驶员的情绪状态直接影响紧急制动期间的反应时间。 根据文献数据,在紧急制动过程中分析了射击驱动器的压力和反应时间[11]。 Manning [12]在制动时,平均峰值为750 N,没有统计差天津南卡大学的中国工程师已经开发了一个可以读取大脑信号并相应控制汽车的系统。在论文[6]中,被认为是开发出对脑部残疾人非常有帮助的脑驱动汽车。汽车可用于人工智能的异步机理。几篇论文[7-8]考虑了开发基于脑电图的脑控制的汽车,该汽车可以被身体残疾人使用。同时考虑了不同神经相互作用模式的各种大脑状态。大脑模式的特征是不同的脑波频率,例如β波在12至30 Hz之间与浓度有关,而8至12 Hz之间的α波与放松和精神平静的状态有关[9]。头部肌肉的收缩也与独特的波模式有关,隔离这些模式是一种检测驾驶员情绪状态的方法[10]。驾驶员的情绪状态直接影响紧急制动期间的反应时间。根据文献数据,在紧急制动过程中分析了射击驱动器的压力和反应时间[11]。Manning [12]在制动时,平均峰值为750 N,没有统计差
图 2 显示了支持各种分析要求的建模活动的基本流程。所有模型均从适当的数据库发展而来。为了支持了解车辆响应特性和快速设计有效可实现控制律所需的许多参数分析,需要低阶结构模型。空气动力学公式需要反映可用的风洞测试数据,特别是关于俯仰稳定性的数据,因为飞翼设计在俯仰方面本质上是边缘稳定或不稳定的。这些模型还需要能够包括执行系统和传感器的代表性模型。MSC/NASTRAN 是进行建模活动和图 3 半跨度有限元模型的主要工具
摘要:带有扭矩电动机的现代直接驱动和高速旋转台非常适合所有处理和组装应用,这些应用需要最短的索引时间和浮动的定位。以下论文致力于研究,设计和优化由气动能量引起的创新桌夹紧系统(用于精确定位的制动器),以6 bar的最大夹紧压力工作。上述应用的挑战与开发能够在数千nm范围内提供最大切向扭矩(夹紧螺母)的解决方案有关,而无需利用高压液压能的使用。提出的解决方案的优化是基于应力的精确计算,以进行疲劳评估和夹具的弹性变形,以便设置交配部分之间的正确公差。最终,为了调整数值模型而进行了实验活动,然后将其用于验证提出的设计解决方案。