大量研究表明,参数化人工神经网络 (ANN) 可以有效描述众多有趣的量子多体汉密尔顿量的基态。然而,用于更新或训练 ANN 参数的标准变分算法可能会陷入局部极小值,尤其是对于受挫系统,即使表示足够具有表现力。我们提出了一种并行调节方法,有助于摆脱这种局部极小值。这种方法涉及独立训练多个 ANN,每个模拟由具有不同“驱动器”强度的汉密尔顿量控制,类似于量子并行调节,并且它将更新步骤纳入训练中,允许交换相邻的 ANN 配置。我们研究了两类汉密尔顿量的实例,以证明我们使用受限玻尔兹曼机作为参数化 ANN 的方法的实用性。第一个实例基于置换不变汉密尔顿量,其地形阻碍了标准训练算法,使其逐渐陷入假局部最小值。第二个实例是四个氢原子排列成一个矩形,这是使用高斯基函数离散化的第二个量化电子结构哈密顿量的一个实例。我们在最小基组上研究了这个问题,尽管问题规模很小,但它表现出了假最小值,可以捕获标准变分算法。我们表明,通过量子并行回火来增强训练对于找到这些问题实例基态的良好近似值非常有用。
摘要:海水中卵泡运动的运动的摄影测试表明,气泡可以产生单一或两种结合的旋转,其结构类似于RNA或DNA结构。旋转和电线运动是由离子水合物的加速度导致的,离子水合物的加速度在卵泡的上和下曲率上分离到阴离子和阳离子的结构域。然后将这些运动加速在气泡下产生的涡流的上部片段中,之后它们在涡流的最终片段中制动。由于快速自旋而产生明显的摩擦,从而导致电原子H,C,N,O和P的极化。同时,旋转离子和偏振原子可以产生磷酸盐分子,环核糖,环状核果和氮原理块的电块,配备了H 2或H 3转子。这种构型表明氢转子可能具有通过相邻电极原子的价涂层刺激的振荡产生电子的能力。然后,电子可以流经氮和脱氧核糖或核糖流向磷酸基团。因此,带负电荷的磷酸基团可以吸引阳离子的水合物并刺激其在凹槽中的旋转运动,也会导致阳离子的螺旋流动,超过RNA/DNA凹槽。该流程可能导致核苷酸复制及其沿阳离子线的螺旋组织以及RNA或DNA聚合物的合成,即与最初在气泡下的经文中创建的方式相同。更重要的是,它表明由氢原子制成的转子可以产生生命所需的能量,以及与所有物理和化学领域的CO相结合。
催化烯烃功能化是一种从易于获取的化学原料构建分子复杂性的有效而经济的方法。[1] 过渡金属催化的烯烃氢芳基化/烯基化反应是一种构建 C(sp 3 )−C(sp 2 ) 键的直接方法。已经开发出各种策略来控制使用共轭和非共轭烯烃的区域选择性,其中非共轭烯烃因烷基金属链行走而引入了额外的复杂性。[2-7] 在过去的几年中,使用非共轭烯烃的反马尔可夫尼科夫氢芳基化方法发展迅速。[8-12] 在这些系统中,选择性控制通常源于对形成主要烷基金属中间体的热力学偏好。另一方面,使用非共轭烯烃的马尔可夫尼科夫选择性氢芳基化反应相对较少,该领域的研究进展较慢(方案 1A)。 [13] 2016 年,Shenvi 和同事报告了一项显著进展,他们开发了一种双催化钴/镍金属氢化物氢原子转移 (MHAT) 方法,该方法可有效用于末端烯烃与芳基卤化物的氢芳基化,其中区域选择性由通过 MHAT 有利地形成二级烷基自由基来控制。[13c]
在电气方面发现了超导性,其中部分电子位于晶格间隙中,标记为间质阴离子电子(IAES),引入了一个不同类别,称为电气超级电源。了解IAE在电子音波耦合(EPC)中的作用对于电气超导体的发展至关重要。在这项研究中,我们证明了IAES的净电荷增加可增强12 li 8 H N(n = 4-7)电气的EPC,表现出立方/四方对称性和不同的IAES拓扑。第一原理计算显示EPC常数与IAE的净电荷几乎线性上升。这种增加源于IAES对LI 2 P电子的激发效应及其在库珀对形成中的协作参与,这是由Li衍生的低/中频声子促进的。在PM -3 m Li 8 H 4中明显说明了这种机制,其T C为40.3 K,其中Li原子表现出压缩和拉伸振动,诱导IAES二聚化和最强的局部EPC相互作用。相反,Li 8 H N电气中的氢原子主要调节IAE的净电荷和拓扑。我们的发现对电气超导体的发展具有显着意义。
量子力学的大多数入门课程或书籍都是从特殊系统(例如无限方阱)开始的,并从薛定谔方程中推导出其位置表示中的波函数。尽管这种方法由于其物理设置可能很直观,但它往往会给人错误的印象,即波函数是量子力学中的基本对象。事实上,波函数只是系统状态(狄拉克符号中的 ket)的不同表示。人们总是可以选择其他表示,甚至不选择表示。本课程旨在取消教授波力学,让您摆脱特定的表示,直接使用形式主义。您将探索量子力学 (QM) 形式主义的逻辑发展,并分三部分系统地从有限维发展到无限维。第 1 部分旨在完整而系统地介绍基本量子运动学和量子动力学,以便您对有限维和无限维系统的量子力学有一个实际的了解。还将介绍测量的概念。这为实验提供了概率结果。第 2 部分旨在讨论 QM 中的对称性。旋转对称性(角动量是旋转的生成器)是主要且非常重要的例子。还将讨论氢原子中的旋转对称性,这也将向您介绍 3D QM。第 3 部分增加了无法精确解决的系统的形式化。这些是现实生活中的 QM 示例,解决这些系统的标准方法是通过对时间独立/依赖和非退化/退化系统进行扰动。
Vijaykumar Hulikal Bioorganics and Applied Materials Pvt Ltd. B64/1,Licross,III Stage,PIA,Peenya Bangalore-560 058 电子邮件:vijay.hulikal@bioorganics.biz 摘要 过去几十年来,稳定同位素标记化合物已被来自各个生物医学研究领域的科学家合成和利用。药物代谢科学家和毒理学家有效地利用了用氘和碳-13等稳定同位素标记的化合物来更好地了解药物的分布及其在目标器官毒性中的潜在作用。稳定同位素标记技术与质谱和核磁共振 (NMR) 光谱的结合可以快速获取和解释数据,从而促进了这些稳定同位素标记化合物在吸收、分布、代谢和排泄 (ADME) 研究中得到更广泛的应用。可以通过用氘原子直接交换氢原子(与碳原子结合)来标记分子。由于这些交换反应通常可以直接在目标分子或合成的后期中间体上进行,并且可以使用来自重水的含氘试剂作为氘源,因此该方法对于合成氘代有机化合物特别有效。可以通过卤素/氘交换、还原氘化和其他几种方法将氘插入分子中。近年来,实验室微波设备的发展导致了大量关于通过 H/D 交换制备氘代物质的研究。将介绍 H/D 交换反应和氘标记药物实体的示例。
不同的氟、羟基和甲氧基取代的苯甲醛残基(图 1)对分离的螺旋体肌肉幼虫表现出显着的体外驱虫活性,以及对 MCF-7 和 AR-230 乳腺癌细胞的强效抗增殖活性(Anichina 等人 2021;Argirova 等人 2021、2023)。这些化合物还能够抑制微管蛋白聚合(Argirova 等人 2021)。含有羟基苯基和甲氧基苯基部分的 1H-苯并咪唑-2-基腙在卵磷脂和脱氧核糖模型系统中表现出强大的抗氧化和自由基清除特性以及铁诱导的氧化损伤。密度泛函理论计算表明,1H-苯并咪唑-2-基腙具有非常通用的自由基清除特性,这是因为存在多个反应位点,这些反应位点的特点是反应焓相对较低,并且可以通过不同的反应途径同时起作用:非极性介质中的氢原子转移、极性介质中的连续质子损失电子转移以及极性和非极性介质中的自由基加合物形成 (Argirova 等人,2021 年)。我们选择在这里检查化合物 2H4MB-BH 施加后 HSA 的荧光曲线,并利用这些曲线表征 2H4MBBH-HSA 相互作用参数。所采取的方法是表明荧光参数有显著的变化,这将有助于评估合成的抗癌镇静剂 2-(2-羟基-4-甲氧基苄亚甲基)-1-(1H-苯并咪唑-2-基)肼的恢复效果。
第 3 章 铂金的故事 221004be3.docx 抗癌药物:发现和寻求治愈方法的故事 Kurt W. Kohn,医学博士,哲学博士 名誉科学家 分子药理学实验室 发展治疗学分部 美国国立癌症研究所 马里兰州贝塞斯达 kohnk@nih.gov 第 3 章 铂金的故事:从想象到新型抗癌药。 前两章讲述了烷化剂:一种通过与 DNA 碱基(尤其是鸟嘌呤)紧密(共价)结合来损伤 DNA 的抗癌药物。令人惊讶的是,某些以铂原子为中心的分子可以以与烷化剂非常相似的方式结合和损伤 DNA,尤其是通过攻击 DNA 的鸟嘌呤。铂配合物的抗癌活性是所有抗癌药物研究中最令人惊讶和影响深远的发现之一。这一里程碑式发现的取得方式尤为引人注目。第一个被发现的、结构最简单的铂络合物是顺铂,其改良形式成为癌症化疗的主要支柱。顺铂不可能在药物筛选项目中被发现,因为它是一种无机化学物质,而所有抗癌药物研究都属于有机化学领域,而有机化学是基于碳原子的。顺铂完全由重金属铂原子、2 个氯原子、2 个氮原子和几个氢原子组成;其中没有一个碳原子(图 3.1)。它也不会通过搜索动物、植物、真菌或微生物制成的天然产物而被发现,因为在任何天然生物系统中都没有发现铂。即使重金属络合物已经过抗癌活性筛选,顺铂也很容易被忽略,因为原子及其结构必须恰到好处。例如,顺铂和反铂由相同的原子和键组成,唯一的区别在于两个氯原子是相邻(顺式)还是跨式
日程安排:讲座:星期一和星期一12:00-13:00在L4中;教程:星期三12:00-13:00:T109-T112;第L1节: - L2节: - 第L3节: - 第L4节: - 办公时间:课程网站:http://home.iitk.ac.in/~akjha/poso201a.htm课程内容:这是量子物理学的第一门课程,从了解一些基本物理现象开始,无法通过经典的机制来解释一些基本的物理现象。在讨论了量子物理学的制定后,我们将讨论其在现代科学和工程上的某些应用。假定了一些经典力学和波浪的知识。在数学工具中,我们将使用微积分,微分方程和复杂变量。这是本课程中将涵盖的主题的初步列表。我们可能会添加/删除一些主题到列表中/从列表中:基本线性代数。量子力学,黑体辐射,光电效应,康普顿效应,de-broglie假设及其实验验证的基础。与时间无关和时间依赖性的schrodinger方程,出生的解释,期望值,自由粒子波形和波袋,不确定性原理。在盒子中固定的schrodinger方程的溶液,有限孔中的粒子,跨步势的反射和传输,应用于诸如Alpha-decay,一维谐波振荡器之类的现象。解决氢原子基础状态的固定状态schrodinger方程的解,激发态的讨论,通过引入电子自旋和保利的排除原理对周期表的解释,Stern Gerlach实验,两级系统。游离粒子波 - 函数和金属,kronig-penny模型以及一个维度的频带的形成。光与物质的相互作用,爱因斯坦的现象学理论,状态的寿命,激光器。单个光子干扰和连贯性的简介。量子信息和量子纠缠简介。参考书:(这是一些参考书。在整个课程的整个过程中,都不能遵循特定的书作为文本。,但我们可以将这些书之一用作一组给定主题的文本。)
石墨烯是一块薄薄的碳原子,类似于金属,因为它的电子在纸板的平面上自由移动,形成密集的云,通常阻止其他颗粒和离子穿过它。但是,电子场可以使质子从上到下渗透薄片,从而将石墨烯变成一种筛子1。某些质子与云中的电子结合,形成缺陷,而缺陷又在剩下的电子流过纸张时散射其剩余的电子。结果类似于不受监管的交通交集:电子在一个方向上移动的电子与质子来自另一个。第619页,Tong等人。2报告一种驯服这些质子和电子产生两个独立电流的方法。非常不可渗透是石墨烯的电子云,即使是最小的原子,氢也可能需要数十亿年的时间才能通过纸。从氢叶中去除孤独的质子,其质子甚至更小,并且具有电荷。电场可以将质子通过聚合物或电解质驱动到相邻的石墨烯薄片中,从而使石墨烯成为易于用作氢燃料电池过滤器的杂物材料。这些设备通过将氢原子拆分为质子和电子来起作用:元素会产生电流,然后与质子和氧气重组以形成水作为废物。石墨烯和这些漫游质子之间的相互作用也可用于计算。以及渗透石墨烯,质子可以与其电子结合。切换的能力,尽管原始石墨烯具有出色的电导率(比金属的电导率更好,但如果其电子中的足够多的电子结合到传入的质子,材料就会变成电绝缘体。,但是可以通过使用电极(称为栅极)施加将电场泵入石墨烯的电场来恢复其电导率。
