电能存储是大规模部署和整合风能、太阳能等可再生但间歇性能源的重要组成部分。[1] 液流电池 (RFB) 是一种很有前途的电网级储能技术,由于其可扩展性高、放电时间长、储能与发电分离以及运行固有安全等特点,为深度脱碳提供了许多高价值机会。[2] 传统的液流电池采用低丰度金属离子氧化还原对,如钒,这与技术挑战有关,包括相对较低的能量密度以及高成本和环境问题,限制了它们广泛的商业成功。 [2–4] 近来,有机和有机金属氧化还原活性材料,如醌、[5] 吩嗪、[6] 氮氧自由基、[7] 紫精、[7,8] 芴酮、[9] 有机铁配合物、[10,11] 及其
摘要背景:Covid-19(2019年冠状病毒病)是由严重的急性呼吸综合症2型(SARS-COV-2)引起的,这构成了明显的全球健康和经济危机,该危机敦促有效治疗。方法:总共11个分子(Baricitinib,Danoprevir,Dexamethasone,Hydrox- Ychloroquine,Ivermectin,lopinavir,甲基甲基甲虫,Remdesivir,Remdesivir,Ritononavir,Ritonavir,Ritonavir和Saridegib和Saridegib,saridegib,saridegib,saridegib,condina contine conto ander cons of tosect in select ins seption condine condine contine condine sout solect solect通过靶向SARS-COV的主要蛋白酶(MPRO)的抗病毒活性,这是一种半胱氨酸蛋白酶,介导病毒复制过程中多蛋白的成熟裂解。结果:三种药物与N3(活性MPRO抑制剂作为对照)表现出更强的结合功能:Danoprevir(–7.7 kcal/mol),remdesivir(–8.1 kcal/mol)和saridegib(–7.8 kcal/mol)。在Glya的Danoprevir-Mpro复合物中鉴定出两个主要的常规氢键:143和GLNA:189,而残基GLUA:166形成了碳 - 氢键。在Asna:142,血清:144,CYSA:145,HISA:163,GLUA:166和GLNA:189的Remdesivir中鉴定出七个主要的常规氢键。与抗坏血酸(–5.4 kcal/mol)相比,头孢氨思显示出对MPRO(–7.9 kcal/mol)的结合性更好(–5.4 kcal/mol)。在HISA:164,POA; 168,GLNA; 189和THRA:190的头孢氨思-Mpro复合物中形成了四个碳 - 氢键。结论:这项研究的发现表明,这些药物可能通过靶向MPRO蛋白来抑制SAR-COV-2病毒。
图3(a):针对HMPV(PDB ID:5WB0)的抗病毒化合物和对照的分子动力学仿真结果(2000 ns)。模拟图表示平均(a)RMSD和(b)RMSF值,表明结构稳定性和灵活性。模拟图显示(D)SASA,(E)氢键形成和(F)结合自由能,说明了相互作用强度和分子暴露。循环(c)循环(rog)值的平均(c)半径被注释以突出结合的紧凑性。在测试的化合物中,Remdesivir展示了最稳定,最有效的结合,由低RMSD,高氢键和强结合自由能的支持。
准备系统:使用gromacs/namd/amber分析轨迹运行MD模拟的蛋白质,配体和溶剂设置轨迹:RMSD,RMSF,氢键和SASA自由能计算(MM-PBSA/MM-GBS)和案例研究
1. 引言共晶是由活性药物成分 (API) 和共晶形成剂 (或构象异构体) 形成的,作为固体药物形成的有前途的替代方案,正在引起制药界越来越多的关注。迄今为止,科学家已经合成了各种类型的不常见共晶,其中含有金属配合物作为晶体形成剂和 API [1–3]。与单组分晶体相比,这些共晶增强了各种药学相关特性,包括提高了溶解度、溶解速率、水合稳定性、荧光性能和生物利用度 [4]。API 和共晶形成剂之间的相互作用通过非离子和非共价的分子间相互作用发生,例如范德华力和氢键。因此,未使用的氢键供体和受体位点的存在对于共晶的形成至关重要 [5,6]。
• 感光蛋白;视紫红质 • ChR2 的结构和光循环 • 研究 ChR2 分子机制的方法 • 视网膜的光吸收和光异构化 • 氢键网络重排和通道开放
本文提出将氨基酸改性氧化石墨烯衍生物 (GO-AA) 作为活性材料,用于捕获水介质中的有机污染物并进行电化学检测。草甘膦 (GLY) 是一种存在于许多水体中的除草剂,被选为基准物质,以测试这些材料的电活性有效性,从而为捕获事件提供直接证据。通过环氧环开环反应将 L -赖氨酸、L -精氨酸或 L -蛋氨酸接枝到 GO 表面,促进氨基酸结合并伴随 GO 的部分还原。合成过程导致电荷电阻从 GO 的 8.1 K Ω 降至各种 GO-AA 的 0.8 – 2.1 K Ω,从而支持这些材料在电化学传感中的适用性。所得 GO-赖氨酸、GO-精氨酸和 GO-蛋氨酸用于从水中吸附 GLY。 GO-Lysine 与 GLY 的相互作用最强,1 小时后的去除效率为 76%,大约是工业基准吸附剂颗粒活性炭的两倍。当用作活性材料捕获 GLY 并进行电化学检测时,GO-AA 的性能也优于原始未改性材料。GO-Lysine 表现出最佳灵敏度,即使浓度低至 2 μ g/L 也能识别水中的 GLY。分子动力学模拟证实,这种材料增强的性能可归因于赖氨酸部分和 GLY 之间的氢键和盐桥相互作用,而氢键和盐桥相互作用源于氢键和盐桥相互作用。
图1。生物启发的多尺度调节,通过模仿肌腱到骨接头的界面建筑,对用前所未有的力学(a)进行工程水凝胶,通过结合纳米级矿物质,以超高的刚度和韧性进行设计。(b)与肌腱类似,具有优先排列结构的水凝胶以及链间/链氢键与各向异性力学和优质疲劳性抗性一起赋予。(c)通过设计纤维结构,扭曲的水凝胶纤维具有较高的韧性,柔韧性和抗疲劳性。(d)水凝胶中的多尺度断裂机制,突出了各种结构元素的贡献,例如微/纳米尺度相,微/纳米尺度纤维和///链内链链氢键。在多个长度尺度上的模态,协同作用有助于改善力学。方程将总断裂能(γ)作为内在和外部断裂能的总和(γ0 +γd)。