粮食生产的快速工业化已经显着影响了各个部门产生的废水的质量和数量。由于其废水废水引起的环境问题引起了环境问题的一个这样的行业是食品行业,尤其是酱油生产行业。酱油是许多亚洲美食中的主食调味品,其生产涉及复杂的发酵过程,通常导致废水高度颜色,化学化,化学复杂且充满了有机污染物。浪费酱油是酱油制造的副产品,以其高化的化学氧需求(鳕鱼),高水平的有机化合物和浓烈的色彩而闻名,所有这些都会有助于环境污染,如果不正确地管理以应对处理浪费酱油的兴趣和越来越多的兴趣,则对先进的氧化物进行了越来越多的兴趣,并且利用了先进的氧化能力,即利用先进的水平(一定的水)。 (NF),以提高废水质量。AOP包括诸如臭氧化,紫外线(UV)轻处理和芬顿试剂之类的过程,在分解复杂的有机污染物,减少鳕鱼和脱色废水方面非常有效。另一方面,纳米过滤是一种基于膜的分离过程,能够从水中去除溶解的盐,有机分子和颗粒物,使其在废水处理的背景下成为有价值的技术[1]。
Reza Latifi,* A Jennifer L. Minnick,A Matthew G. Quesne,B,C Sam P. de Visser* d和Laleh Tahsini* A)107物理科学大楼,俄克拉荷马州立大学化学系,俄克拉荷马州立大学,斯蒂尔沃特,斯蒂尔沃特,OK 74078,美国,美国。b)加的夫大学,化学学院,主要建筑,公园广场,加的夫,CF10 3AT,英国。c)Harwell,Rutherford Appleton实验室,Harwell Oxford,Didcot,Oxon,Oxon,Ox11 0fa,英国的研究综合大楼。d)曼彻斯特跨学科生物中心和曼彻斯特大学化学工程与分析科学学院,英国曼彻斯特M1 7DN公主街131号。
©2023 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
在患有精神分裂症(SZ)的患者组中,氧化还原失调在外周液27和大脑中均已报道。已经假设这种失调,包括谷胱甘肽(GSH)周期28的改变可能会因少突胶质细胞对29个氧化应激(OXS)的易感性而导致SZ的脑白质(WM)异常。30 In this study we aim to assess the differences between 82 schizophrenia patients (PT) and 86 healthy controls (HC) 31 in GSH-redox peripheral blood markers: GSH peroxidase (GPx), reductase (GR) enzymatic activities and their ratio 32 (GPx/GR-ratio), evaluating the hypotheses that alterations in the homeostasis of the systemic GSH cycle may be 33与PT中脑WM中的病理机制相关。为此,我们采用了先进的扩散MRI 34方法:扩散峰度成像(DKI)和白质道完整性 - WATSON(WMTI-W),该方法对脱髓鞘和神经毒素的敏感性提供了35个出色的敏感性。36我们表明,女性参与者(HC和PT合并)的GPX水平较高(P = 0.00071),并随37岁衰老而降低(P = 0.026)。我们发现PT和HC在GR和平均峰度的关联中的差异(MK,38 p <0.0001)。也就是说,下MK与HC中的血液GR活性较高有关,但在PT中不相关,这表明HC中高39 GR活性(减少应力的标志)与髓磷脂完整性的变化有关。但是,GSH-REDOX 40外周血标记并不能解释PT中检测到的WM异常,或者本研究的设计如果存在,则无法检测到41个明智的现象。42 43 44简介45
在过去的几十年中,化学,石化和炼油行业的快速扩张引起了人们对具有多种有机物质的表面和地下水的广泛污染的越来越担心(Awad等,2022; Beauregard et al。,2020; 2020; Mohammed Ali等,2022)。因此,酚类化合物在各种工业废物中普遍存在,阻碍了常规生物治疗过程的功效,通常会使它们的消除困难或不可证明(Noorani等,2024; Rahman and Mustafa,2022)。鉴于它们损害生物的能力,即使在低浓度下,苯酚也达到了优先污染物的状态。此外,由于它们对人类健康构成的可能威胁,有几个被标记为危险(EPA,2002; Kalash等,2020; Kalash等,2019)。石油工业的废水经常被生产并排放到世界领先的水体中,从而造成严重的环境问题。炼油厂废水中污染物的数量和特征取决于正在加工的油类型,植物构型,操作程序和加工单元(Diya'uddeen等,2011)。
这项工作的目的是将RGO的显着电和机械性能与ZnO纳米颗粒的高抗菌性能相结合,以使用SOL-GEL制备方法通过自旋涂层技术来制备改进的光活性杀菌表面。用不同的RGO载荷的ZnO-RGO纳米复合材料的生物活性针对革兰氏阳性的致病细菌葡萄球菌金黄色葡萄球菌分析。涂层进行了深刻的特征,并进行了几项测试以评估电荷转移过程和抗菌机制。由于良好的表现还应包括耐药性和洗涤涂层后的重复使用,因此重要的是要通过在重复的孵育 - 辐射周期下测定相同的涂层来评估光催化涂层的可重复性。这种完整的方法使我们能够识别活性物种并建立这些表面的作用机理,这些表面具有很高的杀生物剂和稳定性,这表明了它们具有涂层功能表面的巨大潜力。
简介。- 光学信息可以按照自由度的极化程度进行编码,通过光学旋转和空间自由度进行参数,即横向光学模式的相位和强度曲线[1,2]。矢量梁结合了极化和空间信息。由具有不同复杂幅度的正交极化组成,它们表现出空间变化的极化曲线,提供了广泛的应用[3-5]。原子偶极转移通过选择规则对极化敏感,以及通过兔频率的复杂光幅度敏感,使原子活跃的光学元件可以通过矢量束的内在特性进行修改和修改。这种双向相互作用允许创建复杂的光学现象,在过去的几十年中,这些现象已经进行了广泛的研究[6]。矢量光原子相互作用可以产生空间各向异性[7 - 9]和一致性[10-12],并在原子中量身定制非线性效应[13-16]。矢量梁也已存储[17,18],并在原子系统中转换[19,20]。
图 1. 本研究中提出的工作方案:使用改进的 Hummers 方法 [40, 52] 对石墨进行氧化和剥离,然后通过可持续热液还原法以水为溶剂进行还原以生成 rGO。合成后干燥方法可以控制 rGO 微粒的最终表面积和孔结构。将电催化剂流动沉积在碳毡电极上,并应用于 VRFB 单电池中以评估其对电化学性能的影响。
所有因素至少取决于参与反应的物质的浓度,从而导致电池的典型非线性充电和放电曲线。对于 VRFB,这意味着充满电的电池的开路电压约为 1.6 V,放电状态下约为 0.8 V。充电和放电过程的速度直接取决于电流。但是,电池总是有极限,出于各种原因,这些极限不能超过。对于 VRFB,与所有基于水性电解质的电池一样,充电电压受水的电化学稳定性限制。根据电极材料和 pH 值,水在特定电位下分解为氢和氧。在铂电极(标准电位)处,电位差为 1.23 V。因此,除了成本之外,使用这种电极的 VRFB 甚至无法以合理的效率充电半满,因为在充电过程中会产生越来越多的氢和氧。不幸的是,其他金属
摘要:维生素 C 已被人们熟知数十年。它作为日常饮食、补充剂和防腐剂的元素,在日常生活中很常见。多年来,人们一直在研究如何精确确定抗坏血酸在细胞中的作用机制。现有结果表明其具有多方向的细胞效应。维生素 C 属于清除自由基的抗氧化剂,还具有“第二面”——促氧化因子。然而,后者的性质是对细胞有害的缺陷,还是有益的优点?在这篇综述中,我们讨论了维生素 C 治疗在癌症预防中的作用以及抗坏血酸在维持中枢神经系统 (CNS) 氧化还原平衡中的作用。最后,我们讨论了维生素 C 补充剂对氧化性 DNA 损伤生物标志物的影响,并回顾了维生素 C 具有放射保护特性的证据。