- FDA授予紧急用途授权羟基氯喹 - 政治任命者对CDC的建议进行修改 - CDC员工通过VP办公室进行的通信•WSSRGP 17名成员,9名以前/现在的成员ACIP,VRBPAC,VRBPAC,NVAC
2019年冠状病毒病(COVID-19)是由严重的急性呼吸综合症冠状病毒-2(SARS COV-2,以前称为2019-NCOV)引起的,在中国首次识别出来,并引起了国际关注(1)。2020年1月30日,世界卫生组织(WHO)宣布了19日的流行病“国际关注的公共卫生紧急情况”。 2020年3月11日,该人宣布了小说的冠状病毒爆发“全球大流行”(2)。SARS COV-2的出现,在2002年的SARS COV和2012年的中东呼吸综合征(MERS)COV之后,是二十一世纪高度致病的人冠状病毒的第三次流行病紧急情况(3)。在全球范围内,19,462,112例证实的案件,19.19案,已在09-08-2020(https://covid19.who.int/)报告了722,285例死亡。在沙特阿拉伯,总确认的共同证明为288,690例,有252,039例恢复案件和3,167例死亡,如09-08-2020访问(https://covid19.moh.gov.sa)。COVID-19仍然是一个严重的全球挑战。对SARS COV-2的诊断测试的研究继续进行(4);但是,必须注意评估测试和解释其结果(5)。 主要的诊断工具是实时PCR(RT-PCR),其样品,例如鼻拭子,气管抽吸或支气管肺泡灌洗。 计算机断层扫描图像有助于诊断和随访(6)。 在没有任何有效的治疗干预措施的情况下,正在尝试使用抗病毒药物,氯喹/羟基氯喹和呼吸疗法。对SARS COV-2的诊断测试的研究继续进行(4);但是,必须注意评估测试和解释其结果(5)。主要的诊断工具是实时PCR(RT-PCR),其样品,例如鼻拭子,气管抽吸或支气管肺泡灌洗。计算机断层扫描图像有助于诊断和随访(6)。在没有任何有效的治疗干预措施的情况下,正在尝试使用抗病毒药物,氯喹/羟基氯喹和呼吸疗法。唯一的干预显然是在降低这种高度感染和传播病毒的传染率时有效的是避免接触和自我隔离/隔离(7)。COVID-19的主要死亡原因似乎是与疾病严重程度相关的细胞因子风暴(8)。对COVID-19的抗体反应,尤其是IgG和中和抗体通过阻止病毒进入宿主细胞以及病毒后感染来介导保护(9)。
COVID-19 因其在世界范围内的迅速传播以及高发病率和相关死亡率而引起了全球关注。严重的 COVID-19 可能并发急性呼吸窘迫综合征、脓毒症和脓毒症性休克,从而导致死亡。这些并发症被认为是由于免疫系统过度激活导致与多器官衰竭相关的细胞因子风暴综合征所致。在这里,我们报告高迁移率族蛋白 1 (HMGB1),一种典型的损伤相关分子模式 (DAMP) 和致命炎症的中心介质,可能是 COVID-19 创新治疗策略的潜在目标。重症 COVID-19 患者血清 HMGB1 升高 (189.40 140.88 ng/ml)。外源性 HMGB1 以 AGER 依赖的方式诱导肺泡上皮细胞中 SARS-CoV-2 进入受体 ACE2 的表达。重要的是,通过基因(使用 AGER siRNA)或药理(使用甘草酸、氯喹、羟氯喹和 FPS-ZM1)抑制 HMGB1-AGER 通路可阻断 ACE2 表达。因此,HMGB1 抑制剂同样是治疗 COVID-19 患者的有希望的候选药物。
背景:由19日大流行的驱动和可怕的发现抗病毒药,我们探索了SARS-COV-2生物医学出版物的景观,以识别潜在的治疗方法。目的:这项研究的目的是鉴定出可能对冠状病毒病大流行有益的标签药物,它提出了一种称为Covidx的新型排名算法,以建议现有的药物潜在的重新利用,并在临床试验中使用药物知识验证基于文献的基于文献的结果。方法:为了实现此类目标,我们应用了自然语言处理技术来识别药物和链接实体(例如疾病,疾病,基因,蛋白质,化合物)。当链接此类实体时,它们会形成一张可以使用网络科学工具进一步探索的地图。Covidx算法是基于我们称为“多样性”的概念。通过测量如何使用各种生物实体计算“多样化”药物的多样性评分(无论每个类别中实际实例的基础性如何)。该算法验证排名并授予目前正在开放临床试验中正在研究的药物。开放临床试验的基本原理是提供PubMed结果的验证机制。这确保提供了这种疾病快速发展的最新证据。结果:从分析的生物医学文献中,该算法确定了30种可能的候选药物进行重新利用,相应地对其进行排名,并根据临床试验的证据验证了排名结果。根据我们的算法,前10名候选者是羟氯喹,阿奇霉素,氯喹,氯喹,利托那韦,洛萨拉坦,losartan,remdesivir,favipipiviravir,favipiviravir,甲基丙糖酸酯,雷帕霉素,tilorone dilorone dilorone dilorone dihydrochloride。结论:排名在识别可以重新使用的药物方面表现出一致性和有望。但是,我们认为,完整的治疗方法是一种多方面的辅助方法,可能需要同时服用多种药物。
药物 1 药物 2 药物 3 依米丁 法匹拉韦 卡莫司他 去氢依米丁 利托那韦* 伯氨喹 洛匹那韦* 羟氯喹 阿托伐醌 利托那韦* 阿利泊韦 乌米芬诺韦 鲁平曲韦 卡莫司他 格里菲辛 三氮唑核苷 沙奎那韦 瑞德西韦 羟氯喹 法匹拉韦 利托那韦* 卡莫司他 瑞德西韦 利托那韦* 茚地那韦 瑞德西韦 鲁平曲韦 法匹拉韦 奥司他韦 伯氨喹 依米丁 洛匹那韦* 阿托伐醌 去氢依米丁 阿利泊韦 法匹拉韦 洛匹那韦* 乌米芬诺韦 强力霉素 利托那韦* 三氮唑核苷 瑞德西韦 阿利泊韦 茚地那韦 格里菲辛 羟氯喹 瑞德西韦 沙奎那韦 卡莫司他 法匹拉韦 鲁平曲韦 卡莫司他奥司他韦 利托那韦* 沙奎那韦 法匹拉韦 利托那韦* 瑞德西韦 格里菲辛 伯氨喹 注:* 在这种情况下可以使用 Kaletra(洛匹那韦/利托那韦组合)
摘要 恶性疟原虫的分子监测对于追踪新出现的突变和已发现突变的趋势非常重要,应作为抗疟药耐药性的早期预警系统。2019 年,在肯尼亚西部八个县对学童进行了恶性疟原虫疟疾调查,从调查中获取了干血斑。实时 PCR 鉴定出 500 个恶性疟原虫阳性样本,这些样本在五个耐药位点进行了扩增,以进行靶向扩增子深度测序 (TADS)。重要的 kelch 13 突变的缺失与 2019 年前肯尼亚的发现相似,在密码子 569 和 578 中观察到低频突变。氯喹抗性转运蛋白基因密码子 76 和 145 为野生型,表明寄生虫分别对氯喹和哌喹敏感。基于密码子 86、184 和 199 的多药耐药基因 1 单倍型主要存在于单倍型 NYT 和 NFT 的混合感染中,分别由缺乏氯喹压力和使用苯芴醇驱动。磺胺多辛-乙胺嘧啶耐药性谱是 Pfdhfr(51I 59R 108N)和 Pfdhps(436H 437G 540E)三重突变的“超级耐药”组合,导致磺胺多辛-乙胺嘧啶无效。TADS 突出显示了低频变异,从而可以尽早识别新的突变、Pfmdr1 密码子 199S 和 Pfdhfr 密码子 85I 以及新出现的 164L 突变。TADS 的附加价值在于它能够准确地识别混合基因型感染并进行抗疟药耐药性标志物的高通量监测。
SARS-CoV-2 可通过内吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。在这里,我们描述了一种溶酶体靶向的、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒内吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100 – 150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2 WA1 及其 Omicron 变体。细胞器靶向递送是抑制病毒感染的有效方法。
SARS-CoV-2 可通过胞吞吸收感染细胞,该过程可通过抑制溶酶体蛋白酶来靶向。然而,临床上这种治疗病毒感染的方法结果好坏参半,一些研究详细介绍了羟氯喹的口服方案,并伴有明显的脱靶毒性。我们认为,以细胞器为靶点的方法可以避免毒性,同时增加药物在靶点的浓度。本文我们描述了一种溶酶体靶向、载有甲氟喹的聚(甘油单硬脂酸酯-共-ε-己内酯)纳米颗粒 (MFQ-NP),可通过吸入方式进行肺部输送。在 COVID-19 细胞模型中,甲氟喹是一种比羟氯喹更有效的病毒胞吞抑制剂。 MFQ-NPs 的毒性小于分子甲氟喹,直径为 100-150 纳米,表面带负电荷,有利于通过内吞作用吸收,从而抑制溶酶体蛋白酶。MFQ-NPs 可抑制小鼠 MHV-A59 和人类 OC43 冠状病毒模型系统中的冠状病毒感染,并抑制人类肺上皮模型中的 SARS-CoV-2-WA1 及其 Omicron 变体。这项研究表明,细胞器靶向递送是抑制病毒感染的有效方法。
2019 冠状病毒病 (SARS- CoV-2) 或 COVID-19 大流行感染了全球数百万人并导致数万人死亡,成为最具破坏性的疫情之一。WHO(世界卫生组织)已宣布其为公共紧急事件 [1]。随着感染病例和死亡人数的上升,在这前所未有的时期,恐惧和动荡也日益加剧。目前还没有明确的治疗和预防疗法,也没有任何既定的指导方针帮助医生应对这种病毒,因为他们正在这个未知的领域中摸索。瑞德西韦已显示出一些初步的希望,而氯喹和相关药物羟氯喹已被建议谨慎使用,因为它们可能缺乏疗效和存在安全性问题 [2]。过去几个月发生的事件性质不稳定,造成了令人不安的恐慌和恐惧。过去对付顽强病原体的一个核心方面是令人垂涎的疫苗。免疫帮助拯救了数百万人的生命,使他们免于可预防的致命疾病。在这篇评论中,我们将简要讨论备受追捧的 COVID-19 疫苗、开发这种疫苗的动态和可能遇到的挫折。
编者注:与风湿病转诊相关的延误促使我们中的许多人开始接受类风湿性关节炎治疗,而一些家庭医生根本无法获得风湿病专科护理。2019 年 ACR 指南审查了类风湿性关节炎疾病活动性指标,并将临床疾病活动性指数 (CADI) 评为其五个推荐量表中最强的量表。1 CADI 易于获取(https://www.rheumatology.org/Portals/0/Files/CDAI%20Form.pdf),最快完成(两到五分钟),不需要实验室测量,并将疾病活动性评定为缓解、低、中和高。ACR 对初始推荐药物有明确规定——低疾病活动性使用羟氯喹,中度或高度疾病活动性使用甲氨蝶呤。对于服用甲氨蝶呤期间症状不受控制的患者,使用传统合成 DMARD 的三联疗法始终有效。甲氨蝶呤、柳氮磺吡啶和羟氯喹都可以轻松开具处方并进行监测,几乎不需要风湿病专家的指导,而且比生物或靶向合成 DMARD 更安全、耐受性更好、更便宜。—Michael J. Arnold,医学博士,特约编辑