二氧化碳的光催化还原可以在多种材料上进行,包括无机半导体、碳基半导体、金属配合物、超分子及其衍生物 [3]。光催化过程中的关键步骤是 CO2 分子的初始吸附和活化。吸附在氧空位处进行,在此过程中 CO2 从 Ti3+ 获得电子,形成带负电的物质 [4]。该过程伴随着 CO2 的线性结构转变为高度反应性的弯曲形式 [5]。值得一提的是,CO 2 − 物种的形成可以在没有光催化剂表面照射的情况下发生,但这会显著增加它们的浓度 [ 4 ]。另一个重要步骤是当光照射到光催化剂上时形成电子-空穴对。形成的电子被转移到 TiO 2 表面,在那里被吸附的 CO 2 捕获,从而增强了带负电荷物种的形成。同时,产生的空穴与水分子接触,产生氢离子 (H + ) 和羟基自由基 ( · OH)。CO 2 − 自由基可以进一步转化为 CO
电动汽车正在取代内燃机(ICE),因为负担得起的石油储备的可用性正在减少,并且需要减少CO 2排放。电动机效率高(90%,而ICE 2为20%),从而降低了维护成本。最重要的是,电动机不会发射CO 2,NOX或颗粒物,并且可以由可再生能源(例如风能或太阳能)提供动力。这项技术的挑战在于将电力存储在车载板上以供应电动机。存在两个主要选择:电池电动车辆(BEV)和氢燃料电池电动汽车(FCEV)。电池直接存储电力,而氢转化是一种间接的存储形式。为了产生氢,电力用于通过称为电解的过程将水分子分成氢(H 2)和氧(O 2)。氧气被释放到空气中,然后很容易将氢气储存在水箱中。在需要时,H 2可以与空气中的O 2重新组合,以在燃料电池中形成水和电。
氢是一种清洁能源载体,也是储存能量的有效媒介。由于对环境的影响小且特性可靠,氢通常被视为环保的理想能源载体,可以从许多可大量获取的来源生产,例如天然气、水和电、生物质、沼气等。氢是天然气的可持续替代品。从天然气中分离出来后,该过程中释放的二氧化碳被捕获并储存在地下或用于化学品制造。这就产生了所谓的蓝氢。另一种生产氢的方法是通过电解将水分子 (H2O) 分离成氢和氧,由可再生能源提供动力。氨(一个氮原子与三个氢原子结合)是氢的有效能量载体,相比之下具有显著的能量密度。按重量计算,氨的能量几乎是液态氢的两倍。就能量密度而言,液态氨含有 15.6 MJ/L,比液态氢(低温下为 9.1 MJ/L)高出 70%。
脂质体是由Alec D. Bangham在1965年初发现的,该杂物源自希腊语,其中Lipo的意思是“脂肪”宪法,而Soma的意思是“结构”。脂质体的大小相对较小,范围从50 nm到直径几微米。这些是球形囊泡,其中水核完全被一个或多个磷脂双层包围。它具有诱捕亲脂性和亲水性化合物的独特能力。将疏水或亲脂分子插入双层膜中,而亲水分子可以捕获在水中心中。由于它们具有生物相容性,生物降解性,低毒性和诱捕亲水性和亲脂性药物的能力,并简化了对肿瘤组织的现场特异性药物的递送,因此脂质体的速度既提高,既提高了研究系统的速率,又可以作为一种研究系统和商业化作为药物递送系统。已经对脂质体进行了许多研究,目的是降低药物毒性和/或靶向特定细胞 div>
因此,在SPT体验中使用光学镊子的利用在给示踪剂粒子上的访问中带来了重要的优势,并提供了受控力量以促进观察。在生物物理学中最初和主要应用[24,30,31]光学镊子和SPT越来越多地在物理学[32]和流体动力学等物理学中共同实施。[33] Franosch等,[5],例如,研究了在水中光学捕获的珠的布朗运动,并揭示了周围的水分子曾在曾经被粒子的热运动打扰的粒子上作用。,光学镊子通过提供控制力并从而促进粒子运动的表征在发现这种弱相互作用中起着至关重要的作用。与这些在生物物理学和物理学中的成功演示不同,光学镊子和SPT的结合尚未在化学和表面科学中积极出现。单独的SPT已在表面科学中广泛使用,以揭示扩散的分子级细节,[34,35]质量转运,[18]催化反应,[36]和许多其他过程[37],这些过程与经典的体积或集合测量值无法访问。[38]另一方面,光学诱捕也发现了
月船一号于 2008 年 10 月 22 日从斯里哈里科塔的 Satish Dhawan 航天中心发射升空。它使用了本土研制的极地卫星运载火箭 (PSLV-XL)。该航天器于 2008 年 11 月 8 日成功进入月球轨道,仅在六天后就释放了月球撞击探测器。同一天,由于恒星跟踪传感器故障,月球撞击探测器在沙克尔顿陨石坑附近坠毁。撞击探测器坠毁时,人们可以分析月球地下土壤中是否有冰的痕迹。月船一号在距月球表面仅 100 公里的地方盘旋,拍摄了大量月球地形的高分辨率图像。它还进行了矿物测绘,并搜寻了月球表面是否有放射性元素。该任务的主要成就之一是发现月球土壤中存在大量水分子。该任务仅花费了 5600 万美元,为我们提供了有关月球表面的重要信息。它还在月球南极发现水冰,可用于饮用和其他用途。
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
引言如今,纳米材料作为药物输送系统的应用已被广泛考虑,特别是在癌症治疗中。1已证明纳米级(˂ 200 纳米)的材料可以延长体内循环时间并通过内吞作用进入细胞;从而引起细胞内吸收。2,3不同的纳米材料如胶束、4树枝状聚合物、5,6超顺磁性氧化铁纳米粒子(SPION)、7介孔二氧化硅纳米粒子、8金纳米粒子(GNP)、9量子点、10碳纳米管11和脂质体已用于药物输送系统。12其中脂质体是最常见的纳米载体,因为它们具有高生物相容性、低免疫原性、类细胞膜、低毒性以及能够保护药物免于水解并延长其生物半衰期等固有优势。它们能够包封疏水或亲水分子并控制药物释放。3,13,14 此外,人们在开发智能药物载体方面做出了许多努力,这些载体可以根据外部或内部触发来运送药物。在这方面,脂质体被认为是最成功的药物输送系统之一。15,16
对于快速,方便的操作以及原油和天然气的大量运输量,管道是对石油和天然气持续需求的经济关键答案[1]。管道通常是由于其良好的机械性能和低成本而从碳钢中产生的[2,3]。然而,众所周知,碳钢在侵略性环境中遭受了高腐蚀风险,这使得内管道腐蚀成为一个具有挑战性的问题,并可能导致巨大的经济损失和安全问题[1,4]。在可用的缓解方法中,使用腐蚀抑制剂是减慢内部管道腐蚀速率的最具成本效益和方便的方法[5]。有机抑制剂通过形成一个吸附的层来保护金属底物,该层可以阻碍水分子和其他腐蚀性物种进入表面的通道[6]。抑制有效性取决于抑制剂 /表面系统形成粘附和连续层的能力。极性功能性头组和抑制剂分子尾巴之间的分子间相互作用起着至关重要的作用[7,8]。基于表面和抑制剂之间的相互作用强度,抑制剂化合物已被描述为被物质化或化学吸附[9]。物理吸附描述了带电底物/抑制剂分子之间的弱电静态相互作用,为
摘要:解读水分子的性质和利用水发电一直是科学和社会的重要课题。最近,人们对将水滴的动能转化为电能的兴趣日益浓厚,尤其是直流 (DC) 电,它可以直接为电子传感器和芯片供电。然而,现有的发电技术依赖于水的移动方向,这会阻止应有的直流电的输出,但却会产生不必要的交流电。在这里,我们报告了通过在夹层石墨烯 - 水 - 半导体结构内以任意方向移动水滴,从动态极化水 - 半导体界面产生直流电。与方向无关的直流电产生基于一种非平凡机制,其中水分子经历极化和去极化过程,导致在水滴运动过程中在水 - 半导体界面输出电能。开路电压可通过包含水滴的两个板之间的费米能级差异进行调节,其中石墨烯-水-硅和铝-水-硅分别显示 ∼ 0.3 和 ∼ 1.0 V 的直流电压。我们的研究结果揭示了水-半导体界面的现象,并为潜在的可持续封装自供电设备提供了一种利用水产生直流电的新途径。