如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
大型语言模型 (LLM) 在处理推理任务方面表现出令人印象深刻的能力。然而,与能够本能地根据任务的复杂性调整问题解决策略的人类不同,大多数基于 LLM 的方法采用一刀切的方法。这些方法采用一致的模型、样本大小、提示方法和问题分解级别,而不管问题的复杂性如何。这些方法的不灵活性会带来不必要的计算开销或次优性能。为了解决这一限制,我们引入了一个自适应求解器 (AS) 框架,该框架可以动态调整解决策略以适应各种问题,从而实现测试时间计算资源的灵活分配。该框架有两个主要模块。初始评估模块使用答案一致性评估当前解决方案的可靠性。如果解决方案被认为不可靠,则后续的适应模块开始发挥作用。在这个模块中,各种类型的适应策略被协同使用。通过这种动态和多方面的适应,我们的框架可以帮助减少计算消耗并提高性能。复杂推理基准的实验结果表明,我们的方法可以在保持原有性能的同时显著降低 API 成本(最高可达 85%)。此外,在相同成本下,与基线相比,其准确率最高可提高 4.5%。代码和数据集可在 https://github.com/john1226966735/Adaptive-Solver 上找到。
图 1 在经典计算机上使用不同的轨道基组初始化为不同自旋多重性的 LiH 和 TiH 双原子分子的预测 CCSD 键解离曲线。预测的 TiH 基态配置会根据所选的轨道基组而变化。基态配置用实心标记表示,而较高能量配置用空心标记表示。
摘要:在开源 CFD 工具箱 OpenFOAM 中开发了 3D 结冰模拟代码。采用混合笛卡尔/贴体网格划分方法来生成复杂冰形周围的高质量网格。求解稳态 3D 雷诺平均纳维-斯托克斯 (RANS) 方程以提供绕翼的集合平均流动。考虑到液滴尺寸分布的多尺度特性,更重要的是为了表示过冷大液滴 (SLD) 不太均匀的特性,实现了两种液滴跟踪方法:为了提高效率,采用欧拉方法跟踪小尺寸液滴(50 µ m 以下);采用随机采样的拉格朗日方法跟踪大液滴(50 µ m 以上);在虚拟表面网格上求解表面溢流的传热;通过 Myers 模型估计冰积聚;最后,通过时间推进预测最终的冰形。由于实验数据有限,分别使用欧拉法和拉格朗日法对二维几何的三维模拟进行验证。事实证明,该代码在预测冰形方面是可行的,并且足够准确。最后,给出了 M6 机翼的结冰模拟结果,以说明完整的三维功能。
精确计算多费米子量子系统的基态和激发态是当代物理和计算科学中最重要的挑战之一,其解决方案将从量子计算设备的出现中受益匪浅。现有的使用相位估计或变分算法的方法存在潜在缺点,例如深度电路需要大量误差校正或非平凡的高维经典优化。在这里,我们引入了一个收缩特征值方程的量子求解器,它是经典方法的量子类似物,用于求解基态和激发态的能量和简化密度矩阵。该求解器不需要深度电路或困难的经典优化,并且比其经典对应物实现了指数级加速。我们通过在量子模拟器和两个 IBM 量子处理单元上进行计算来演示该算法。
SAT问题询问是否存在命题逻辑中给定公式的令人满意的真理分配。sat非常棘手[10],但是现代的SAT求解器,尤其是冲突驱动的子句学习(CDCL)求解器,在从各种应用程序中求解大型公式方面取得了重大进展。在组合问题方面,随机局部搜索(SLS)求解器通常比CDCL更有效。由于SLS和CDCL求解器具有互补的优势,因此一些SAT求解器,例如Kissat [7]和Cryptomin- iSat [16]组合SLS和CDCL技术,SLS方法在塑造现代SAT求解器的能力方面起着关键作用。sls求解器通过翻转单个变量的真实价值直到找到解决方案或超时为止。求解器通常会尝试翻转变量,以最大程度地减少伪造的从句的数量。求解器确定没有可变翻转会根据某些启发式或度量标准导致改进时,它已达到局部最低限度。为了逃避局部最小值,求解器可以进行随机翻转或调整其内部状态,直到改善为止。尽管是逃脱本地最小的算法的有效算法,但动态搜索(DLS)吸引了
试图在大型系统上达到完全精确度显然面临着所谓的“指数墙”,这限制了最精确方法对更复杂的化学系统的适用性。到目前为止,用经典超级计算机执行的最大计算量也只包括数百亿个行列式 4 ,有 20 个电子和 20 个轨道,随着大规模并行超级计算机架构的进步,希望在不久的将来解决接近一万亿个行列式(24 个电子、24 个轨道)的问题。5 鉴于这些限制,必须使用其他类别的方法来近似更大的多电子系统的基态波函数。它们包括:(i) 密度泛函理论 (DFT),它依赖于单个斯莱特行列式的使用,并且已被证明非常成功,但无法描述强关联系统 6 – 8 ; (ii) 后 Hartree - Fock 方法,例如截断耦合团簇 (CC) 和组态相互作用 (CI) 方法,即使在单个 Slater 行列式之外仍然可以操作,但由于大尺寸分子在 Slater 行列式方面的计算要求极高,因此不能应用于大尺寸分子。9 – 16 一个很好的例子是“黄金标准”方法,表示为耦合团簇单、双和微扰三重激发 CCSD(T)。事实上,CCSD(T) 能够处理几千个基函数,但代价是巨大的运算次数,而这受到大量数据存储要求的限制。17 无论选择哪种化学基组(STO-3G、6-31G、cc-pVDZ、超越等),这些方法都不足以对大分子得出足够准确的结果。 Feynman 18,19 提出的一种范式转变是使用量子计算机来模拟量子系统。这促使社区使用量子计算机来解决量子化学波函数问题。直观地说,优势来自于量子计算机可以比传统计算机处理“指数级”更多的信息。20 最近的评论提供了有关开发专用于量子化学的量子算法的策略的背景材料。这些方法包括量子相位估计(QPE)、变分量子特征值求解器(VQE)或量子虚时间演化(QITE)等技术。21 – 24 所有方法通常包括三个关键步骤:(i)将费米子汉密尔顿量和波函数转换为量子位表示;(ii)构建具有一和两量子位量子门的电路;(iii)使用电路生成相关波函数并测量给定汉密尔顿量的期望值。重要的是,目前可用的量子计算机仍然处于嘈杂的中型量子(NISQ)时代,并且受到两个主要资源的限制:
抽象的DNA损伤是化学试剂引起的最重要作用之一。我们使用末端脱氧核苷酸转移酶DUTP Nick End标记(TUNEL)测定法(TUNEL)分析对DNA片段化的比较分析,通常用于检测细胞凋亡。我们的方法结合了分离的细胞结构中的细胞遗传学技术和研究,从培养基中恢复,目的是比较三个不同细胞系的DNA片段化,甚至超出了遵守底物的细胞之外。因此,我们检测到单个染色体,整个核和其他细胞结构上的任何碎裂点。细胞暴露于单一和联合处理中的白藜芦醇(RSV)和阿霉素(DOXO)。对照和处理的星形胶质细胞在凝结的核和分离结构中显示DNA损伤。CACO-2细胞仅在Doxo处理后才显示出碎片的DNA,而对照组显示出碎片的染色体,指示复制细胞中的DNA损伤。MDA-MB-231细胞在RSV处理之后表现出核凝结和DNA片段化,并且与分离的结构有关。该模型被证明执行了基因组不稳定性(GI)的分级。星形胶质细胞显示GI的混合水平。CACO-2细胞显示出碎片的中期染色体,证明了DNA大坝被传输到子细胞可能是由于缺乏DNA修复机制所致。相反,MDA – MB-231细胞显示出很少或没有碎片的中期,表明可能激活DNA修复机制。通过应用这种替代方法的TUNEL测试方法,我们获得了可以更具体地表征DNA碎片的数据,以适用于在各个领域的合适应用。