核酸疗法具有沉默,表达或编辑基因的巨大潜力。然而,基于核酸的药物需要化学修饰和复杂的纳米技术,以防止其降解,减少免疫刺激作用并确保细胞内递送。脂质纳米颗粒(LNP)技术是当前的黄金标准输送平台技术,它已使第一种siRNA药物Onpattro和COVID-19-19-MRNA疫苗的临床翻译能够进行临床翻译。尽管如此,目前批准的LNP系统主要适合静脉内治疗后地方给药或肝脏输送后的疫苗目的。在这里,我引入了一个基于天然脂蛋白的纳米传递平台,该平台防止了小型干扰RNA(siRNA)的过早降解,以确保其靶向和细胞内递送到造血茎和祖细胞和祖细胞(HSPC)中。建立了稳定地融入其核心的原型载脂蛋白脂质纳米颗粒(ANP)后,我们构建了一个全面的库,我们彻底地表征了单个ANP的物理化学特性。在对所有制剂进行体外筛选后,我们选择了八个代表图书馆多样性的siRNA-ANP,并确定了它们使用乱伦施用方案在小鼠中的免疫细胞亚群中沉默溶酶体相关的膜蛋白1(LAMP1)的能力。我们的数据表明,使用不同的ANP,我们可以在免疫细胞亚群及其骨髓祖细胞中实现功能基因沉默。除了基因沉默之外,ANP平台接合免疫细胞的固有能力为其提供了巨大的潜力,可以将其他类型的核酸疗法传递给HSPC。
三阴性乳腺癌 (TNBC) 是一种侵袭性乳腺癌亚型,其特征是缺乏激素受体和 HER2 表达,导致治疗选择有限且患者预后不佳。本研究探索了一种新的治疗方法,即使用装载有 siXBP1 并与表皮生长因子受体 (EGFR) 抗体结合的 PLGA 脂质纳米粒子。这种纳米载体将沉默 XBP1 基因,这对于 TNBC 的进展和生存至关重要,尤其是在缺氧条件下。纳米粒子与 EGFR 抗体的结合提高了它们对 TNBC 细胞的靶向能力,这已通过共聚焦显微镜和流式细胞术证实。靶向纳米粒子的荧光强度比非靶向纳米粒子高 1.45 倍。这些纳米粒子有效地将 siRNA 递送到 TNBC 细胞,导致 XBP1 基因沉默效率显著提高 75%。在缺氧条件下,这种基因沉默效应显著促进了细胞凋亡,与常氧条件相比,细胞凋亡率几乎增加了三倍。这些发现为 TNBC 的靶向治疗提供了宝贵的见解,并为进一步的体内研究铺平了道路,以推动这种方法走向临床应用。
1。基因组学研究中心(肠道微生物群的关键实验室和海伦吉安根省的药物基因组学,中国生物医学 - 药剂师的国家主要实验室),哈尔林医科大学,哈尔滨医科大学,哈尔宾,150081,中国。2。冰冻区心血管疾病(NKLFZCD)的国家主要实验室,哈尔滨医科大学,哈尔滨,150081,中国。3。Harbin医科大学 - 卡尔加里·卡明学院医学中心感染与基因组学中心,哈尔滨医科大学,哈尔滨,150081年,中国。 4。 加拿大卡尔加里大学生物化学与分子生物学系,加拿大T2N 4N1。 5。 加拿大卡尔加里大学,卡尔加里大学免疫学和传染病系微生物学系,加拿大T2N 4N1。 6。 抗肿瘤药理学司,上海医学学院,中国科学院上海医学研究所,上海,上海,201203年,中国中国科学学院。Harbin医科大学 - 卡尔加里·卡明学院医学中心感染与基因组学中心,哈尔滨医科大学,哈尔滨,150081年,中国。4。加拿大卡尔加里大学生物化学与分子生物学系,加拿大T2N 4N1。5。加拿大卡尔加里大学,卡尔加里大学免疫学和传染病系微生物学系,加拿大T2N 4N1。6。抗肿瘤药理学司,上海医学学院,中国科学院上海医学研究所,上海,上海,201203年,中国中国科学学院。
2025 年 1 月 8 日 — 技能/策略。单元 1- 第 1 周。忠诚和。尊重。背景和情节......沉默的军队。背景。知识。词汇结构。神秘。单元 2- 第 3 周太空......
nclisiran 是一种寡核苷酸,与三天线 N-乙酰半乳糖胺碳水化合物结合,有助于药物与肝脏肝细胞上表达的脱唾液酸辅蛋白受体结合。当 inclisiran 被肝细胞吸收后,inclisiran 会与 RNA 诱导沉默复合物 (RISC) 结合,这是一种核糖核蛋白复合物,主要在基因沉默和调控中发挥作用。单链 RNA 可作为 RISC 的模板,以确定适当的信使 RNA 补体。RISC 还可以激活核糖核酸酶 (RNase) 并切割目标 mRNA。2 将 inclisiran 掺入 RISC 会通过靶向切割 PCSK9 特异性 mRNA 来破坏 PCSK9 翻译。这种切割导致肝脏 PCSK9 产生减少,从而导致 LDL 受体增加
反义 RNA 分子是一种独特的 DNA 转录本,由 19 – 23 个核苷酸组成,其特点是与 mRNA 具有互补性。这些反义 RNA 在调节基因表达的各个阶段(包括复制、转录和翻译)中起着至关重要的作用。此外,人工反义 RNA 已证明其能够有效调节宿主细胞中的基因表达。因此,致力于研究反义 RNA 作用的研究大幅增加。这些分子被发现对各种细胞过程有影响,例如 X 染色体失活和健康细胞中的印迹沉默。然而,重要的是要认识到,在癌细胞中,异常表达的反义 RNA 可以触发肿瘤抑制基因的表观遗传沉默。此外,缺失诱导的异常反义RNA的存在可以通过表观遗传沉默导致疾病的发展。值得一提的一个药物开发领域是反义寡核苷酸(ASO),致癌反式长链非编码RNA(lncRNA)的一个主要例子是HOTAIR(HOX转录本反义RNA)。NAT(非编码反义转录本)在许多癌症中失调,研究人员才刚刚开始揭示它们作为癌症特征的关键调节器的作用,以及它们在癌症治疗中的潜力。在这篇综述中,我们总结了反义RNA的新兴作用和机制,并探讨了它们在癌症治疗中的应用。
在所有活细胞中,基因组 DNA 都是通过与专用蛋白质相互作用和/或形成多聚螺旋而压缩的。在细菌中,DNA 压缩是动态实现的,与密集且不断变化的转录活性相协调。H-NS 是一种主要的细菌类核结构蛋白,由于其与 RNA 聚合酶的相互作用而特别受关注。H-NS:DNA 核蛋白丝抑制 RNA 聚合酶的转录起始。然而,H-NS 沉默的基因可以通过来自邻近区域的转录激活这一发现表明,延长的 RNA 聚合酶可以分解 H-NS:DNA 丝。在这项研究中,我们提供了证据表明转录诱导的反沉默不需要转录到达沉默基因;相反,它在远处发挥作用。通过在中间片段内引入 DNA 旋转酶结合位点可抑制反沉默,这表明长距离效应是由转录驱动的正 DNA 超螺旋向沉默基因扩散引起的。我们提出了一个模型,其中 H-NS:DNA 复合物在体内在负超螺旋 DNA 上形成,H-NS 桥接了多面体的两条臂。相邻转录产生的正超螺旋的旋转扩散将导致 H-NS 结合的负超螺旋多面体“展开”,从而破坏 H-NS 桥并释放 H-NS。
尽管近年来分子医学实践取得了巨大进步——反义寡核苷酸 (ASO) 疗法和首个基于 CRISPR 的疗法的获批就是明证——但神经退行性疾病,如朊病毒病、亨廷顿氏病、阿尔茨海默氏病和帕金森氏病,仍然是一项艰巨的挑战。有毒蛋白质聚集与神经退行性疾病有关,这表明基因沉默是一种广泛适用的治疗策略。尽管 ASO 和基于 CRISPR 的沉默具有抑制致病蛋白表达的潜力,但努力尚未成功。在本期第 1421 页,Neumann 等人。( 1 ) 报道了一种新的表观遗传编辑器,可以抑制小鼠大脑中朊病毒蛋白 (PrP) 的表达,为治疗神经退行性疾病提供了一种新方法。