为了满足这些营养需求,生产者经常使用尿素和硫酸铵 (AMS) 的物理混合物。虽然物理混合物可能具有施肥者所需的营养量,但一旦撒在田地里,可能会导致营养条纹不均匀。另一种选择可能是均质混合物,包括大分子和次要营养元素,例如氮 (N)、钾 (K) 和硫酸盐-硫 (SO4-S),其中含有适合大多数土壤的最佳数量的这些营养元素。目标考虑到油菜籽与大多数作物相比具有较高的营养需求,2024 年在朗登研究推广中心进行了一项肥料试验。该试验由 UKT 芝加哥赞助。试验的目的是比较两种均质新肥料 NKS(28-0-5-6SO4-S)和 NKS(26-0-7-9SO4-S)与尿素和 AMS 等直接肥料的效果。新型肥料中的氮以铵 (NH4 + ) 和硝酸盐 (NO3 - ) 形式存在,因此与尿素不同,它们不会因氨挥发而损失。该研究采用了三种不同比率的氮、钾和硫酸盐-硫 (SO4-S),并测量了油菜籽的产量和质量。根据土壤有效磷的结果,所有处理统一施用磷。试验地点试验地点位于北达科他州兰登的 NDSU 兰登研究推广中心。处理和重复根据土壤分析结果,所有处理都采用了全比率的磷,即每英亩 72 磅,而采用尿素和 AMS 组合的直接施肥处理(T2、T3 和 T4)没有采用任何钾。但是,这些处理确实采用了等量的氮和等量或接近量的 SO4-S。由于均质肥料 NKS 28 和 NKS 26 中含有钾,因此 T5 至 T10 处理除了氮、磷和 SO4-S 外还添加了钾。此外,在 T2 至 T4 处理中,尿素以 14 毫升/10 磅的比例用脲酶抑制剂处理,所有肥料均以表面撒播的方式施用。肥料和养分类型及数量的详细信息见表 1。
在 135 个独特分析中比较了每个种子质量性状的预测准确度,评估了对 GS 模型(九个回归模型)、群体(五个模型训练/验证群体设计)和标记密度(三个包含低、中和高密度的标记集)的响应。预测准确度(以预测和实际表型之间的相关性表示)范围从 0.023(总油含量)到 0.897(亚油酸含量)。预测准确度与性状复杂性呈负相关,与训练/验证群体相关程度呈正相关,标记密度或参数模型之间没有显着差异。机器学习模型的表现与普通参数模型相当或更差。总油含量是所分析的最复杂的性状,当改变上述因素时,准确度提高高达 0.745。
图 1 植物中脂肪酸和三酰甘油合成途径的示意图。虚线显示三酰甘油合成中脂肪酸的流动。ACC,乙酰辅酶 A 羧化酶;ACP,酰基载体蛋白;CoA,辅酶 A;DGAT,二酰甘油酰基转移酶;FAB2,脂肪酸生物合成 2;FAD2,脂肪酸去饱和酶 2;FAD3,脂肪酸去饱和酶 3;FAE1,脂肪酸延长酶 1;FATA,脂肪酰基-ACP 硫酯酶 A;FATB,脂肪酰基-ACP 硫酯酶 B;KAS,β-酮酰基-酰基载体蛋白合酶;LMAT,丙二酰辅酶 A/ACP;PC,磷脂酰胆碱; PDCT,磷脂酰胆碱:二酰甘油胆碱磷酸转移酶。
鉴于非洲国家目前面临的与农业贸易相关的诸多挑战,肩负保护弱势群体责任的政策制定者必须意识到其国家可能因这些挑战而遭遇的潜在粮食生产中断。例如,俄罗斯和乌克兰都是许多农产品的主要出口国,包括葵花籽油和种子、小麦、大麦、油菜籽和玉米。两国合计占全球小麦贸易的 27%,而大麦、油菜籽和玉米贸易的全球份额分别占 23%、16% 和 14%1 。此外,目前正在交战的俄罗斯和乌克兰占全球氮、钾和磷肥出口的 28% 以上2 因此,俄乌战争破坏了全球粮食和农业价值链的稳定,预计战争持续时间越长、强度越大,这种情况将持续甚至恶化。作为化肥和小麦的净进口国,非洲国家已经经历了这些商品及其替代品价格的上涨。化肥和小麦价格上涨将对当前和未来季节的农业生产产生负面影响。因此,更多的家庭可能需要来自各种来源的支持,以度过由此产生的食品价格上涨。
油菜籽在发育过程中含有叶绿素,使其呈现绿色。随着种子的成熟,它们会呈现出黑色、红褐色到黄色等颜色。黑色和红褐色种子的种皮会积累色素,而黄籽品种的种皮透明,可以露出胚的颜色。研究表明,黄籽油菜籽比黑籽品种休眠期短、发芽更简单、含油量更高,因此培育黄籽油菜籽是提高油分含量的有效方法(Yang et al.,2021)。芥菜和油菜黄籽品种的鉴别相对简单,因为纯黄色表型在遗传上是稳定的(Li et al.,2012;Chen et al.,2015)。然而,由于种皮颜色变异复杂,包括黄色中夹杂黑色斑点、斑块或棕色环等杂色,油菜种皮一直未能获得稳定的纯黄色后代,且分离后代的种皮颜色呈现连续变异(刘,1992;Auger等,2010;Qu等,2013),因此准确、高效地测定油菜种皮颜色仍是一项关键且具有挑战性的任务。许多研究涉及油菜籽颜色的鉴别(Li等,2001;Somers等,2001;Zhang等,2006;Baetzel等,2003;Tańska等,2005;Li等,2012;Liu等,2005;Ye等,2018)。例如,Li等(2001)通过目视观察来评估甘蓝型油菜的黄籽程度,这种方法简单但过于依赖观察者,导致识别可能不准确。Somers等(2001)利用光反射来评估黄籽颜色等级,通过测量反射值并计算籽粒颜色指数或光反射值。该方法虽然较为客观,但仅能捕捉亮度等单维颜色数据,忽略了原始材料的丰富信息。为了解决这一限制,许多学者致力于通过 RGB 颜色系统进行数字图像分析( Zhang et al.,2006 ; Baetzel et al.,2003 ; Ta ńska et al.,2005 ; Li et al.,2012 ; Liu et al.,2005 ; Ye et al.,2018 )。然而,油菜籽表皮颜色复杂且相似,精准识别颜色具有挑战性,现有的技术缺乏可靠性和标准化。因此,准确、有效地测量黄籽油菜的颜色仍然至关重要。化学计量学和计算机技术的最新进展导致了近红外光谱技术(NIRS)的发展,这是一种结合物体图像和光谱数据的技术。 NIRS 以其速度快、无损和高效而闻名,被广泛用于农产品的快速、无损分析。多项研究已经证明了它的实用性(Guo 等人,2019年;布等人,2023;梁等人,2023;刘等人,2021;佩蒂斯科等人,2010;森等人,2018;刘等人,2022;张等人,2020;魏等人,2020;张等人,2018;江等,2017;李等人,2022;江等,2018;他等人,2022)。例如,郭等人。 (2019) 使用 NIRS 成像系统 (380 – 1,000 nm) 来准确量化掺假大米,而 Bu 等人。 (2023) 将高光谱成像与卷积神经网络相结合,建立了高粱品种识别的智能模型,准确率超越了现有模型。该技术也已应用于油菜生长诊断。例如,刘等人 (2021) 开发了一种基于高光谱技术的检测算法来预测甘蓝型油菜中的油酸含量。Petisco 等人 (2010) 研究了甘蓝型油菜的可见光和近红外光谱。
执行摘要:法国是欧洲最重要的医学生物技术中心之一,但农业生物技术受到严格法规、最低限度的研究和开发以及低公众支持的限制。法国政府已批准进口转基因产品用于动物饲料,但继续限制研究,同时禁止种植。目前的情况不太可能在短期内改变。法国进行基础研究,并在实验室中使用转基因和创新技术。然而,由于公众反对和破坏风险,法国目前没有进行田间试验。众所周知,反生物技术团体会毁坏农作物,即使只是怀疑存在转基因。上一次授权的转基因田间试验是在 2013 年。法国的农业生物技术研究非常有限,近期没有真正的商业化机会。虽然法国不生产商业转基因产品,但法国畜牧业进口转基因饲料,主要是来自南美和美国的大豆和豆粕,以及来自加拿大和澳大利亚的油菜籽(油菜籽)。法国和欧盟为增加欧洲植物蛋白产量提供了激励措施,但对农业生物技术的限制显然对这一目标产生了不利影响。农业生物技术的反对者对公众舆论有很强的影响力。法国谷物生产商、动物饲料生产商、畜牧业和科学家普遍接受度较高;然而,这些声音很少受到关注。法国媒体很少报道生物技术的潜在好处,包括减少农药使用和提高农业生产的其他效率。动物生物技术主要用于医学研究。法国政府反对在动物育种中使用生物技术,动物权利活动家不鼓励就该技术的客观科学价值进行辩论,包括改善动物福利的方法。
曲霉菌属真菌的致突变作用是由于其含有称为霉菌毒素的化合物,其中包括剧毒的低分子量化合物——黄曲霉毒素。最常见的是黄曲霉毒素B1(AFB1)。具有致突变、致癌、毒性和免疫抑制作用。据估计,约有 45 亿人接触了高剂量的黄曲霉毒素。世界上每年约有55万至60万。新的肝癌病例是由接触高剂量黄曲霉毒素引起的。为此,发达国家纷纷对谷物中黄曲霉毒素的含量作出限制。黄曲霉毒素污染最常发生在谷物、油菜籽、香料、坚果、辣椒和干果中。乳制品也可能受到意外污染。
印度仍未决定是否将转基因 (GE) 作物和生物技术 (biotech) 衍生产品用于食品和饲料。Bt 棉花 (苏云金芽孢杆菌) 仍然是唯一获得完全批准用于商业种植的生物技术衍生作物,尽管监管机构现在也已授予生物安全授权,允许在环境中释放转基因茄子和芥菜。来自部分转基因大豆和油菜籽的大豆油和菜籽油,以及一些来自微生物生物技术的食品成分已获准进口。2021 年 8 月,印度商务部允许进口 120 万公吨 (MMT) 的转基因大豆压碎脱油豆饼(即豆粕),作为非 LMO 转基因产品进口。然而,印度在类似产品的市场准入问题上依然拖拖拉拉,例如来自转基因作物(即玉米和大豆)的干酒糟及可溶物和豆粕,以及转基因苜蓿干草。