几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
几何声学 GA 建模技术假设表面相对于感兴趣的波长较大。对于给定场景,实践者通常会创建一个具有大而平坦表面的 3D 模型,该模型在很宽的频率范围内满足假设。这种几何近似会导致模拟声场的空间分布出现误差,因为影响反射和散射行为的几何细节被忽略了。为了补偿近似,建模者通常会估计表面的散射系数,以随机地解释反射方向性中实际的、与波长相关的变化。一种更具确定性的方法可以考虑一系列几何细节不断增加的模型,每个模型都在相应的频带上进行分析,以满足大表面尺寸的要求。因此,为了提高 GA 模拟的宽带空间精度,我们提出了一种多分辨率建模方法。使用波纹墙的比例模型测量、我们的方法与非 GA 技术的比较以及一些简单的听力测试,我们将展示
电子邮件:tvijaykumar@sjbit.edu.in)。 抽象的高端自动驾驶汽车预计至少具有一百个不同的电子子系统。 他们每个人都通过电源管理单元(PMU)从电池中拿起电力。 具有高效PMU至关重要,有望提供所需的不间断功率水平。 PMU由几个降压转换器组成,可将较高的电压水平转换为所需的较低电压水平。 如果PMU组成有效且结构良好的电压转换器,则更可靠。 在本文中,设计了一个耐故障的降压转换器,输出3.3伏。 提出了一种简单而有效的技术,可以通过绕过故障转换器腿来设计易耐故障的DC-DC转换器。 所提出的系统利用基于信号处理的方法进行故障检测。 仅在原主转换器的确认预后才能激活次级转换器。 输出铝电解电容器(AEC)电压中纹波含量被监测并用作转换器的主要健康指标。 在实验室中构建和测试了实验设置。 实验结果表明,从主要转换器到次级的平滑过渡表明了不间断的电源以及所提出的解决方案的简单性和有效性。 关键字铝电容电容器,电源管理单元,预后,波纹电压,电压调节器。电子邮件:tvijaykumar@sjbit.edu.in)。抽象的高端自动驾驶汽车预计至少具有一百个不同的电子子系统。他们每个人都通过电源管理单元(PMU)从电池中拿起电力。具有高效PMU至关重要,有望提供所需的不间断功率水平。PMU由几个降压转换器组成,可将较高的电压水平转换为所需的较低电压水平。如果PMU组成有效且结构良好的电压转换器,则更可靠。在本文中,设计了一个耐故障的降压转换器,输出3.3伏。提出了一种简单而有效的技术,可以通过绕过故障转换器腿来设计易耐故障的DC-DC转换器。所提出的系统利用基于信号处理的方法进行故障检测。仅在原主转换器的确认预后才能激活次级转换器。纹波含量被监测并用作转换器的主要健康指标。在实验室中构建和测试了实验设置。实验结果表明,从主要转换器到次级的平滑过渡表明了不间断的电源以及所提出的解决方案的简单性和有效性。关键字铝电容电容器,电源管理单元,预后,波纹电压,电压调节器。
进行仿真以验证比较分析。当使用PSIM的热模块将织物的输入电子圆应用于每个电路结构时,计算了功率半导体状态的功率半导体状态。仿真制定的系统参数就像表1。模拟之前,有一些事情要假设。首先,所有电路基本上都是凸起的桥转换器。第二,所有电路都是输入电压移动设备,输出与1.3kW系统相同。系统的输入电压为380V。因此,电压380V应用于初级侧的一个MOSFET,整个类别为3A。确定了dotranspoer的第二侧的转弯,将电压和流动电流施加到dio de上。IXKH70N60C5(600V,70A)MOSFET,FAIRCHILD ISL9R3060G2(600V,30A)二极管被选为。 图2显示了电路结构的输出调节电压。 在四个电路结构中,解码后(b)是由繁殖组成的独立组成的,因此它可以根据L和C的值比(a),(c),(c),(c),(c),(d)降低电压纹波。 (d)容易受到不同电路救援光束的影响,因为它是一个核心选项卡。 的电压输出也证实了它是波纹异常。 图3银色功率半导体提起诉讼和传福音的丧失。 如果连接了第二侧的主要阶段和地面,则色板电流应力增加和损失。 另一方面,共享输入电源的电路结构和共享输入功率的电路结构的中期电路结构具有很小的阶段,并且输入电流价格在流动,因此救援较少降低。。图2显示了电路结构的输出调节电压。在四个电路结构中,解码后(b)是由繁殖组成的独立组成的,因此它可以根据L和C的值比(a),(c),(c),(c),(c),(d)降低电压纹波。(d)容易受到不同电路救援光束的影响,因为它是一个核心选项卡。的电压输出也证实了它是波纹异常。图3银色功率半导体提起诉讼和传福音的丧失。如果连接了第二侧的主要阶段和地面,则色板电流应力增加和损失。另一方面,共享输入电源的电路结构和共享输入功率的电路结构的中期电路结构具有很小的阶段,并且输入电流价格在流动,因此救援较少降低。
摘要 - 在本文中,通过有限元方法(FEM)研究了等离子bragg光栅过滤器的微型设计。过滤器基于沉积在石英基板上的等离激元金属 - 金属波导。为近红外波长范围设计的波纹布拉格光栅均在波导的两侧结构。通过改变过滤器设计的几何参数来研究过滤器的光谱特性。结果,在λbragg= 976 nm处获得的最大ER和带宽为36.2 dB和173 nm,滤光片占地面积分别为1.0×8.75 µm 2。可以通过分别增加光栅周期和光栅的强度来进一步改善ER和带宽。此外,Bragg光栅结构非常容易接受介质的折射率。这些特征允许使用材料,例如金属 - 绝缘体 - 金属波导中的聚合物,可以进行外部调整,也可以用于折射率传感应用。所提出的Bragg光栅结构的灵敏度可以提供950 nm/riU的灵敏度。我们认为,本文提出的研究提供了一个指南,以实现可用于过滤器和折光索引传感应用中的小脚印等离子布拉格光栅结构。
摘要:在双层石墨烯 (BLG) 中打开带隙对于石墨烯基电子和光子器件的潜在应用具有重要意义。本文,我们报告了通过在 BLG 和 Ru 衬底之间插入硅烯在 BLG 中产生相当大的带隙。我们首先在 Ru(0001) 上生长高质量的 Bernal 堆叠 BLG,然后将硅烯插入 BLG 和 Ru 之间的界面,这通过低能电子衍射和扫描隧道显微镜得到证实。拉曼光谱显示,插入的 BLG 的 G 和 2D 峰恢复到独立 BLG 特征。角分辨光电子能谱测量表明,BLG 中打开了约 0.2 eV 的带隙。密度泛函理论计算表明,大带隙打开是 BLG 中掺杂和波纹/应变共同作用的结果。这项工作为 BLG 中带隙打开的机制提供了深刻的理解,并增强了基于石墨烯的器件开发的潜力。关键词:双层石墨烯、带隙、协同机制、插层、硅烯 ■ 介绍
尽管这些火星车在月球和火星探索方面有着令人瞩目的记录,但它们的任务也暴露了轮式移动系统所面临的重大局限性,这阻碍了科学探索。例如,勇气号火星探测器在一个名为“特洛伊”的地方陷入一块松散的土壤中,最终因电量不足而终止任务。该地点的土壤以硫酸铁为主,内聚力很低,因此机械性能较弱,延伸至与车轮半径相当的深度。 [12] 不幸的是,这层沉积物隐藏在一层硬化程度较弱的土壤外壳之下,导致危险直到火星车嵌入土壤中才被发现。 [9] 在任务初期,勇气号的六个车轮中有一个出现故障,需要修改驾驶策略,这加大了救援难度。 [12] 机遇号探测器在穿越子午线平原随处可见的大型风成波纹时也遇到了类似的挑战。特别是,它被困在“炼狱”波纹的松散沙子中很长时间 [13](图 1 A)。
(D) 使用适当的工具,如电流表、天平、弹道车或同等设备、电池、卡尺、摄氏温度计、消耗性化学品、碰撞设备、计算机和建模软件、恒速车、数据采集探头和软件、带电源的放电管(H、He、Ne、Ar)、动力学和力演示设备、验电器、静电发生器、静电套件、摩擦块、绘图技术、手持式视觉分光镜、加热板、铁屑、激光笔、灯泡、宏量计、磁铁、磁罗盘、质量装置、公制尺、米尺、模型和图表、运动探测器、万用表、光学台、光学套件、光学透镜、摆锤、光电门、平面镜、偏光膜、棱镜、量角器、电阻器、带波发生器的波纹槽、绳子或细绳、科学计算器、简单机械、弹簧、弹簧、弹簧秤、标准实验室玻璃器皿,秒表、开关、音叉、计时装置、轨迹仪、电压表、波动绳、电线或其他能产生相同结果的设备和材料;
中国跨境支付系统开发的中国策略lingling江版人文与科学学院,重庆商学院,中国卡奥吉镇。摘要本文研究了区块链在跨境支付领域的应用。首先,本研究从基础建筑的角度分析了区块链运行的基本原理和特征,然后讨论了区块链围绕“三重悖论理论”,“自由货币理论”,“自由货币理论”和“交易成本理论”中包含的经济理论问题。其次,Ripple是区块链跨境支付的典型代表,以示例选择,比较了Ripple和传统跨境支付系统Swift之间的差异。最后,通过对案例的比较研究,发现了通过区块链优化跨境支付的机制,以及通过区块链进行跨境支付的约束,在此基础上,提出了相应的研究结论和政策建议,并提出了通过区块链开发跨境支付的建议。关键字:中国策略,区块链,波纹,跨境付款,Swift。简介
石墨烯的生产是在金属基底上用化学气相沉积 (CVD) 方法进行的,因为该方法可重复、可扩展,且能获得具有大畴尺寸的高质量层。到目前为止,各种过渡金属已作为基底进行了测试 [4–10],其中铜箔由于碳溶解度低,已被证明是控制单层和双层生长的合适基底。[11–14] 通常,铜箔上石墨烯畴的成核以随机取向发生,从而形成多晶单层石墨烯片 [15] 甚至扭曲的双层石墨烯。[16] 相邻畴合并后会引入晶界,从而限制载流子迁移率。[17] 使用六边形 Cu(111) 表面作为基底,结果表明石墨烯成核发生在与基底晶格对准的位置,从而有效减少晶界。 [18,19] 在实际应用中,需要将石墨烯从金属基底转移到非金属目标基底(如 SiO 2 、SiC)。在许多情况下,转移层的质量不如原生石墨烯。众所周知,基底的选择可能会影响石墨烯的特性。[20–22] 一方面,Kraus 等人早些时候提出,铜基底的刻面可能会压印在石墨烯上,即使在平坦的基底上,转移后也会导致层起波纹。[23] 另一方面,研究表明,在 SiO 2 上转移的单晶石墨烯中的纳米波纹会降低电子迁移率。[24] 此外,在 Bernal 堆叠双层石墨烯中,在不同基底上都观察到了应变诱导的位错线[25–27],这可能会限制载流子迁移率。即使在目标基底上转移后,这些位错也可能存在。了解这些位错的形成和生长衬底的影响将为设计双层石墨烯和其他堆叠二维材料的特性开辟一条道路。我们利用低能电子显微镜 (LEEM) 和衍射 (LEED) 研究了在 Cu(111) 衬底上以及转移到外延缓冲层后 CVD 生长的石墨烯的厚度和晶体度。我们发现,在石墨烯生长过程中,衬底表面会重新构建为小平面,即使在单层石墨烯中也会留下波纹结构。LEEM 暗场测量揭示了衬底小平面在双层(和三层)石墨烯中堆叠域形成过程中的作用,这些堆叠域在转移过程中得以保留。