抽象的量子技术是物理和工程领域的扩展领域,该方案的开发是基于量子力学的增强或新颖应用的协议和设备的开发。这包括量子计算和量子通信。量子计算机承诺基于与光学和仿真问题相关的叠加以及大量分解的计算速度 - 对我们的经典加密方案构成威胁。量子通知通过根据量子力学定律提供无条件安全的通信通道来解决此问题。此外,量子通信将允许在远程量子计算机之间交换量子信息,从而启用分布式量子计算。连接量子计算机或处理器的基础结构称为量子网络。网络节点处的固定量子位用于执行信息处理或存储操作,而频率量子位连接节点并启用量子信息的传输。光子是出色的量子位,因为它们以光速传播并且具有较小的相互作用横截面。因此,量子网络需要光的量子状态来提供量子量。这些光的量子状态需要纠缠,难以区分和波长匹配,以使它们要么在网络中经历较低的传输损失,要么可以与其他量子技术(如基于原子的量子记忆)接触。在本文中,已经研究了单个自组装的光学活性半导体量子点的单个,无法区分或纠缠的光子的发射,我们选择的量子发射器。所研究的量子点在电信范围内发射或接近rubidium中的D 1-转换。在本论文中执行的实验的主要方面是通过使它们使它们的波长(可降低)来研究发射器到未来的量子网络中,并将它们整合到光子结构中并采用谐振激发方案,以使光子具有不预定的纯度纯度,难以置信的区别能力或实用的相关性。在电信范围内,我们研究了INASP纳米线量子点,其发射的发射从接近界面范围转移到电信O – band和c – band。单个光子发射以类似于其近红外对应物类似的量子点的衰减时间。此外,在电信C带中排放的INAS/GAAS量子点集成到压电 - 电动子板上,并通过使用商业
我们报告了未标记样品的深波长远端光学显微镜的实验证明。,我们通过记录从物体散射到远端的相干光的强度模式来击败常规光学显微镜的K /2衍射极限。我们通过深入学习的神经网络检索有关对象的信息,该神经网络对大量已知对象进行了散射事件的训练。显微镜通过概率地检索成像对象的尺寸。二聚体的亚波长度的宽度以K /10的精度测量,概率高于95%,精度为K /20,概率高于77%。我们认为,所报道的显微镜可以扩展到随机形状的对象,并且对已知形状的对象尤为有效,例如在机器视觉,智能制造和生命科学应用程序的粒子计数的常规任务中发现。
摘要:光子学的宽带宽和光谱效率促进了长距离光波通信的空前速度。然而,在不进行光电转换的情况下高效地路由和控制光子信息仍然是一项持续的研究挑战。本文,我们展示了一种动态转换密集波分复用数据载波频率的实用方法。通过将相位调制器和脉冲整形器组合成全光频率处理器,我们实现了 N = 2 和 N = 3 个用户的系统的循环信道跳变和输入数据流的 1 对 N 广播。我们的方法不涉及光电转换,并且能够在单个平台上实现低噪声、可重构的光纤信号路由,原则上可以进行任意波长操作,为低延迟全光网络提供了新的潜力。
摘要。几十年来,显微镜和各种形式的干涉仪一直用于通常大于光波长λ的物体的光学计量。然而,由于衍射极限,亚波长物体的计量被认为是不可能的。我们报告说,通过分析物体散射的相干光的衍射图案,使用深度学习分析,可以测量亚波长物体的物理尺寸,精度超过λ/800。使用633nm激光,我们表明可以以0.77nm的精度测量不透明屏幕中亚波长狭缝的宽度,这对电子束和离子束光刻的精度提出了挑战。该技术适用于集成计量和加工工具的智能制造应用中纳米尺寸的高速非接触式测量。
图 1. 成像装置和物理训练装置。待成像的二聚体被放置在物体平面上,通过低数值孔径透镜 L1(NA=0.3)用波长为 λ = 795nm 的相干激光光源照射。在二聚体上衍射的光通过高数值孔径透镜 L2(NA=0.9)在距离二聚体 h = 2λ 处成像(a)。通过在玻璃基板上的铬膜上聚焦离子铣削制造 12 x 12 = 144 个二聚体狭缝组(b);二聚体的狭缝具有随机宽度 A 和 C,并且以距离 B 随机间隔。在每个二聚体附近制造一个方形对准标记(c)。记录在每个二聚体上衍射的相干光的强度图案。图 (d) 显示了 50λ 宽视场中二聚体的特征衍射图案。
摘要。卫星 NO 2 数据在空气质量研究中的应用日益表明,需要进行具有更高空间和时间分辨率的观测。NO 2 昼夜循环研究、全球郊区观测和排放点源识别是一些重要应用的例子,而这些应用无法在现有仪器提供的分辨率下实现。提高空间分辨率的一种方法是减少检索所需的光谱信息,从而允许使用传统 2-D 探测器的两个维度来记录空间信息。在这项工作中,我们研究了使用 10 个离散波长和成熟的差分光学吸收光谱 (DOAS) 技术来检索 NO 2 斜柱密度 (SCD)。为了测试这个概念,我们使用了来自世界各地不同地区的单个 OMI 和 TROPOMI 1B 级扫描带,这些扫描带既包含清洁区域,也包含严重污染区域。为了离散化数据,我们模拟了一组以 NO 2 吸收截面的各个关键波长为中心的高斯光学滤波器。我们使用 DOAS 算法的简单实现对离散数据进行 SCD 检索,并将结果与相应的 2 级 SCD 产品(即 OMI 的 QA4ECV 和 TROPOMI 业务产品)进行比较。对于 OMI,我们离散波长检索的总体结果与 2 级数据非常吻合(平均差异 < 5 %)。对于 TROPOMI,一致性很好(平均差异 < 11 %),由于其信噪比更高,不确定性较低。这些差异主要可以通过检索图像的差异来解释
b'在室温下,已证实 GaN 半导体中 1.5 \xce\xbc m 电信波长的稀土激光作用。我们已报道了在上述带隙激发下,通过金属有机化学气相沉积制备的 Er 掺杂 GaN 外延层产生的受激发射。使用可变条纹技术,已通过发射强度阈值行为作为泵浦强度、激发长度和光谱线宽变窄的函数的特征特征,证实了受激发射的观察。使用可变条纹设置,在 GaN:Er 外延层中已获得高达 75 cm 1 的光增益。GaN 半导体的近红外激光为光电器件的扩展功能和集成能力开辟了新的可能性。'
鉴于其无与伦比的集成和可扩展潜力,硅很可能成为大规模量子技术的关键平台。由杂质 [ 1 ] 或量子点 [ 2 , 3 ] 形成的单个电子编码人造原子已成为硅基集成量子电路的有前途的解决方案。然而,在如此流行的半导体中,尚未分离出具有远距离信息交换所需的光学接口的单个量子比特 [ 4 ]。这里,我们展示了在植入碳原子的商用绝缘体上硅晶片中单个光学活性点缺陷的隔离。这些人造原子在电信波长下表现出明亮的线性偏振单光子发射,适合在光纤中长距离传播。我们的结果表明,尽管硅的带隙很小(≃ 1.1 eV)先验不利于此类观察 [5],但硅可以容纳在单尺度上可光学隔离的点缺陷,就像宽带隙半导体一样 [6]。这项工作为硅基量子技术开辟了无数前景,从集成量子光子学到量子通信 [7] 和计量。借助微电子行业的巨大成功,硅无疑是部署大规模量子技术的有前途的平台。与单个掺杂剂 [1] 或栅极定义的量子点 [2,3] 相关的硅基电量子比特已经被用于展示可扩展集成量子电路的基本构造块。除了需要在稀释冰箱中操作之外,这些物质量子比特仍然不能远程交换长距离量子信息,因为它们不与光接口。另一方面,电信波长的光子量子比特可以通过概率非线性光学过程在硅内部产生[8]。即使它们适合长距离传播,这些光子也不会与物质量子系统耦合,从而限制了量子比特的实现。
图 2. 未知二聚体的成像。记录未知二聚体 (a) 的衍射图 (b) 的强度分布。经训练的神经网络 (c) 通过衍射图检索二聚体的尺寸 A、B 和 C。图板 (eg) 展示了二聚体检索到的尺寸 A (e)、B (f) 和 C (g) 与真实尺寸的比较。真实尺寸 (红色方块) 在扫描电子显微镜中测量一组 N=14 次测量。对 500 个不同的训练网络评估检索到的尺寸,从而得出检索值的分布。蓝色和灰色圆圈对应该分布的第 1 和第 3 四分位数,而橙色圆圈对应中位数。该系列中的二聚体是“看不见的”:它们的大小是随机的,并且未在网络训练过程中使用。检索到的尺寸与地面真实值(SEM 测量的真实值)的分散性表征了显微镜的分辨能力,对于所有二聚体尺寸,该分辨能力均优于 λ/20。
远程监测痕量大气气体(标签)的浓度(包括许多有害混合物)仍然是一个紧迫的问题。IR区域,尤其是2.5-14 µm范围,对于大气发声非常有前途,因为该范围包括几乎所有大气气体的强吸收线。此外,IR范围包括六个透明窗口。为了覆盖近红外和中期范围,通常使用非线性晶体的光学参数振荡器(OPO)的辐射[1-3]。在这项工作中,我们考虑了一个激光系统(在Solar Laser System Company设计),该系统是设计差异吸收激光龙的一部分;它提供了3–4 µM光谱范围内的纳秒辐射脉冲的可调节产生。根据激光的规格,估计了在此光谱范围内HCl和HBR沿对流层路径的可能性。提出了搜索信息波长的结果以及在上述气体的差分吸收声音中计算激光雷达回声信号的结果。