本报告是作为由美国政府机构赞助的工作的帐户准备的。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。 以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。 本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。既不是任何雇员,他们的任何雇员,其任何雇员,分包商或其雇员,都能对准确性,完整性或任何第三方使用或任何信息的使用结果,或代表其使用任何信息,私人或代表其使用权的保证,或承担任何法律责任或责任,或者任何第三方使用,或者没有任何信息,或代表其使用权,或代表其使用权,或代表其使用权限,或代表其使用权限。以本文提及任何特定的商业产品,流程或服务,商标,制造商或其他方式不一定构成或暗示其认可,建议或受到美国政府或其任何机构或其承包商或其承包商或分包商的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
(棕色),只有G基因(深红色)和缺失的G和F基因测序(也称为深绿色的“其他”),分别由DNA纯化(紫色)救出。在基因组位置(蓝色)和(红色)PCR扩增子清理的基因组位置的测序代表性RSV-A(E)和RSV-B(f)的覆盖深度。bar图显示了NGS的折叠变化读取的映射到未经PCR扩增子纯化的未经和带有PCR扩增的放大器的测序样品和高(g)和高(H)浓度的RSV参考基因组。将洗涤的PCR扩增子的库的 ngs读取为标准化,并表示为对未洗的PCR扩增子的折叠更改,该折叠设置为1。。 数据表示为平均值±SD。 进行 t检验分析的统计显着性。 p值小于0.05被认为具有统计学意义,并将其标记为 *。ngs读取为标准化,并表示为对未洗的PCR扩增子的折叠更改,该折叠设置为1。数据表示为平均值±SD。t检验分析的统计显着性。p值小于0.05被认为具有统计学意义,并将其标记为 *。
• 2.5D IC 与 2D IC 的区别在于,2.5D IC 在芯片和基板之间添加了一个硅中介层,中介层上表面和下表面的金属化层之间通过 TSV 连接。[10] 这样,通过将芯片并排放置,就可以实现不同芯片之间的互连。例如:存储器芯片与逻辑芯片。
摘要:有机发光二极管(OLEDS)被广泛认为是显示和照明技术的前沿技术。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。 近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。 在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。 同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。现在,全球OLED市场几乎已经成熟,这是由于对智能手机上的出色显示的需求不断上升。近年来,已经引入并证明了许多策略,以优化孔注入层以进一步提高OLED的效率。在本文中,阐明了优化孔注入层的不同方法,包括使用合适的孔注入材料来最大程度地减少孔注入屏障并与发射层匹配,并探索新的准备方法以优化孔注入层的结构,等等。同时,本文可以帮助人们了解当前的研究进展,以及与OLED孔注入层相关的挑战,从而提供了未来的研究方向,以增强OLED的特性。
摘要:20 世纪 80 年代,Coleman 以及 Giddings 和 Strominger 的研究将时空虫洞的物理学与“婴儿宇宙”和一系列理论联系起来。我们重新审视这些想法,使用与负宇宙常数和渐近 AdS 边界相关的特征来强化结果,引入视角的变化,并与最近关于 Page 曲线的复制虫洞讨论联系起来。一个关键的新功能是强调零状态的作用。我们在简单的体拓扑模型中详细探索了这种结构,这些模型使我们能够计算相关边界理论的全部范围。渐近 AdS 希尔伯特空间的维度变成了一个随机变量 Z ,其值可以小于理论中独立状态的简单数量 k 。对于 k > Z ,一致性源于引力路径积分定义的内积的精确退化,因此许多先验独立状态仅相差一个零状态。我们认为,任何一致的引力路径积分都必须具有类似的特性。我们还评论了外推到更复杂模型的其他方面,以及对上述集合中各个成员的黑洞信息问题的可能影响。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
对千人基因组计划样本进行高覆盖率纳米孔测序,以建立人类遗传变异的综合目录 作者 Jonas A. Gustafson 1,2,*, Sophia B. Gibson 1,3,*, Nikhita Damaraju 1,4,*, Miranda PG Zalusky 1 , Kendra Hoekzema 3 , David Twesigomwe 5 , Lei Yang 6 , Anthony A. Snead 7 , Phillip A. Richmond 8 , Wouter De Coster 9,10 , Nathan D. Olson 11 , Andrea Guarracino 12,13 , Qiuhui Li 14 , Angela L. Miller 1 , Joy Goffena 1 , Zachary B. Anderson 1 , Sophie HR Storz 1 , Sydney A. Ward 1 , Maisha Sinha 1 , Claudia Gonzaga-Jauregui 15 、Wayne E. Clarke 16,17 、Anna O. Basile 16 、André Corvelo 16 、Catherine Reeves 16 、Adrienne Helland 16 、Rajeeva Lochan Musunuri 16 、Mahler Revsine 14 、Karynne E. Patterson 3 、Cate R. Paschal 18,19 、Christina Zakarian 3 、Sara Goodwin 20 、Tanner D. Jensen 21 、Esther Robb 22 、1000 基因组 ONT 测序联盟、华盛顿大学罕见疾病研究中心 (UW-CRDR)、阐明罕见疾病遗传学的基因组学研究 (GREGoR) 联盟、W. Richard McCombie 20 、Fritz J. Sedlazeck 23,24,25 , Justin M. Zook 11 , Stephen B. Montgomery 21 , Erik Garrison 12 , Mikhail Kolmogorov 26 , Michael C. Schatz 14 , Richard N. McLaughlin Jr. 2,6 , Harriet Dashnow 27,28 , Michael C. Zody 16 , Matt Loose 29 , Miten Jain 30 , Evan E. Eichler 3,31,32 , Danny E. Miller 1,19,31,** 附属机构 1. 美国华盛顿州西雅图华盛顿大学儿科系遗传医学分部 2. 美国华盛顿大学西雅图分子与细胞生物学项目 3. 美国华盛顿大学基因组科学系 4. 美国华盛顿大学西雅图公共卫生遗传学研究所 5. 悉尼南非约翰内斯堡威特沃特斯兰德大学健康科学学院布伦纳分子生物科学研究所 6. 美国华盛顿州西雅图太平洋西北研究所 7. 美国纽约州纽约纽约大学生物系 8. 美国路易斯安那州巴吞鲁日阿拉米亚健康中心 9. 比利时安特卫普 VIB 分子神经病学中心应用和转化神经基因组学组 10. 比利时安特卫普大学生物医学科学系 11. 美国马里兰州盖瑟斯堡国家标准与技术研究所材料测量实验室 12. 美国田纳西州孟菲斯田纳西大学健康科学中心遗传学、基因组学和信息学系 13. 意大利米兰人类科技城 14. 美国马里兰州巴尔的摩约翰霍普金斯大学计算机科学系 15. 国际人类基因组研究实验室人类基因组研究,墨西哥国立自治大学 16. 纽约基因组中心,美国纽约州纽约市 17. Outlier Informatics Inc.,萨斯卡通,萨斯卡通,加拿大 18. 西雅图儿童医院实验室部,西雅图,华盛顿州,美国 19. 检验医学和病理学部,美国华盛顿大学,美国华盛顿州西雅图 20. 冷泉港实验室,美国纽约州冷泉港 21. 斯坦福大学遗传学系,美国加利福尼亚州斯坦福 22. 斯坦福大学计算机科学系,美国加利福尼亚州斯坦福 23. 贝勒医学院人类基因组测序中心,美国德克萨斯州休斯顿
正在申请专利的 ExpressPlex 2.0 文库制备试剂盒采用方便的 384 孔 PCR 板配置,可用于高通量多重文库制备。此升级版 ExpressPlex 使用 seqWell 的高性能 TnX ™ 转座酶,该转座酶专为 NGS 文库制备而设计。扩增子 (>350 bp) 和质粒 DNA 是适合该试剂盒的标准输入。附录 E 重点介绍了可以针对小型微生物全基因组测序进行的修改。ExpressPlex 文库与 Illumina MiSeq ™ 、NextSeq ™ 、iSeq ™ 和 NovaSeq ™ 测序平台兼容。每个 ExpressPlex 2.0 - 384 孔试剂盒都包含足够的试剂,可从 384 或 1,536 个单独的 DNA 样本制备与 Illumina 兼容的文库。每个库的标准制备量为 384 个样本,每个试剂盒最多 1,536 个样本。有四种不同的试剂盒可用于从 1,536 个样本中制备文库,在一次测序运行中可加载总共 6,144 种条形码组合。这种多重文库制备程序针对每 8 µl 反应 0.5 - 20 ng 质粒或扩增子 DNA 的输入进行了优化,通常可生成 400 – 1,200 bp 的文库片段长度。文库片段长度取决于 DNA 的质量和所用的磁珠清理率。使用 ExpressPlex 文库制备试剂盒的主要优势和好处是简化的一步式多重文库制备工作流程,可在 40 倍的 DNA 输入浓度范围内自动标准化每个样本的读取输出,同时最大限度地减少人工和耗材成本。使用 ExpressPlex 2.0 – 384 孔试剂盒,可在 120 分钟内制备 384 重文库以进行文库 QC 和测序,手动操作时间不到 30 分钟。