最大耐腐蚀性。最大热效率。最大热交换器寿命。CG Thermal 的 Umax® 高级陶瓷热交换器是镍合金、活性金属、石墨和石墨热交换器的高价值长寿命替代品,具有无与伦比的耐腐蚀性、热效率、低结垢和可维护性组合。卓越的耐腐蚀性 Umax® 陶瓷热交换器是您最具腐蚀性的传热应用的终极解决方案。它对高达 400 F 的几乎所有化学物质都具有普遍的耐腐蚀性。它们特别适合涉及混合酸、HF、HCL、高浓度 H2SO4、溴、氟或苛性碱的工艺。Umax 陶瓷非常坚硬,不受热冲击影响,具有出色的强度特性、防腐蚀且无污染。耐热冲击和抗机械冲击。Umax® 的抗压强度和抗弯强度分别是石墨的 50 倍和 10 倍。其抗弯强度甚至高于钽。其热性能同样出色,热导率是钽的 2 倍,且热膨胀率较低。
诸如顺铂(顺铂)的设计需要详细了解铂和其他金属离子如何与核酸和核酸加工相互作用。此外,我们发现金属络合物在开发核酸的光谱和反应性探针方面具有独特的用处,因此在开发新的诊断剂中可能变得有价值。自然本身利用了金属/核酸化学,从天然产物的生物合成(例如博霉素)的生物合成,这些天然产物的生物合成将螯合氧化还原活性金属离子靶向和损害外源性DNA,到为真核调节性蛋白的基本结构基序的发展,这些基本结构基序(固定蛋白),锌指蛋白,锌字指蛋白,与DNA结合并调节转换。在所有这些努力中,我们首先需要对过渡金属离子和复合物如何与核酸相互作用以及如何最好地利用这种化学作用有所了解。
在其各自的L -Edges处第一行转变元件的软X射线吸收光谱提供了有关金属中心的氧化和自旋态的重要信息。但是,辐射敏感样品中相关的样品损伤显着改变了氧化还原活性金属中心的电子和化学结构。在这里,我们测量了Mn III(ACAC)3复合物的软X射线光谱,该光谱在八面体环境中包含氧化还原活性Mn III金属中心,并具有超导性的过渡 - 边缘检测器。为了减少主要是由于自由基和电子扩散而造成的次要损伤,在实心样品上收集光谱在30 K和80 K下收集。从第一次扫描开始,我们检测到X射线引起的样品损伤的贡献,导致MN II强度的变化。然而,在低温下,尤其是在30 K时,我们不会观察到辐射损伤的逐渐增加,并在同一位置使用X射线束连续扫描。在我们的估计剂量为90 kgy时,我们发现Mn III(ACAC)3的62%仍然完好无损。但是,在室温下,我们看到辐射损害逐渐增加,而在同一地点的扫描数量增加,这与在其他研究中相同的次级自由度和电子扩散率增加的可能性是一致的。
氮化硅陶瓷底物在活性金属悬挂(AMB)底物中起着关键作用,用于电动模块,其应用包括电动汽车(EV)和混合电动汽车(HEV)电动机控制的逆变器。这些基材在功率半导体模块操作过程中具有散热的函数。同时,底物越细,其热扩散率越高,功率半导体模块的操作效率越大。增加的电动汽车和HEV的采用量正在推动针对高功率设计的功率半导体模块的更多使用,从而最终导致对较薄的底物的需求不断增长,这些底物具有很大的热耗散性能。然而,缺乏评估比0.5毫米的底物热扩散性的确定方法,这在确保测量结果的一致性方面引起了挑战。这项联合研究邀请AIST及其对评估方法的广泛了解以及NGK及其先进的陶瓷底物技术,以收集数据以量化初步过程,这会影响底物热扩散率的测量。这将使我们能够验证评估高性能薄底物的方法,这些底物甚至比0.5毫米薄,例如尚未根据现有日本工业标准(JIS)定义的方法,从而有助于高度准确的测量数据和评估方法的未来标准化。
帕金森氏病(PD)是一种与年龄相关的不可逆性神经退行性疾病,其特征在于,由于nigra nigra pars pars compacta(SNPC)的多巴胺能(DA)神经元的丧失引起的一种逐渐恶化的非自愿运动障碍。PD的两个主要病理生理特征是受影响神经元中包含体的积累,以及在Nigra pars compacta(SNPC)(SNPC)和氯肾上腺素(LC)中含有神经元素的DA神经元的主要丧失。包含体包含错误折叠和聚集的α-核蛋白(α -syn)纤维,称为刘易体。PD的病因和致病机制是复杂的,多维的,并且与环境,遗传和其他与年龄有关的因素的组合相关。尽管已经广泛研究了与PD的致病机制相关的个体因素,但尚未设想发现发现与统一的致病机制的整合。在这里,我们提出了一种基于当前可用的实验数据的独特的高代谢活性耦合的高代谢活性耦合的升高能量需求,提出了PD中SNPC和NE神经元变性的综合机制。所提出的假设机制主要基于这些神经元的独特高代谢活性升高的升高。我们认为,在PD中,SNPC和NE神经元中选择性的DA神经元的高脆弱性可能是由于细胞能量调节。这种细胞能量调节可能会引起这些神经元中氧化还原活性金属稳态(尤其是铜和铁)的DA和NE代谢失调。
摘要 — 快速局部加热技术允许连接对温度敏感的材料和组件,而不会出现高温焊料回流工艺中常见的热损伤。这对于制造热膨胀系数差异较大的材料组件也很有利,不会产生弯曲或开裂。使用夹在焊料预制件之间的放热反应箔是一种很有前途的局部快速焊接工艺,因为它不需要任何外部热源。反应箔由交替堆叠的 Ni 和 Al 纳米层形成,直到达到总膜厚度。一旦使用外部电源激活薄膜,就会发生反应并释放出一定量的能量,这些能量会转移到焊料预制件上。如果这个能量足够高,焊料预制件就会熔化并确保组件材料之间的粘合。研究了施加的压力、反应膜 (RF) 厚度以及焊料和附着材料的化学成分和厚度的影响。结果表明,工艺过程中施加的压力对接头初始质量有很大影响,当压力值在 0.5 到 100 kPa 之间时,空洞率从 64% 降至 26%。这可以通过在较高压力下焊料流动性改善从而带来更好的表面润湿性并消除空洞来解释。另外,一旦焊料熔化时间增加,接头质量就会改善。当反应箔的厚度增加(额外的感应能量)或焊料、Cu 和/或 Si 的厚度减少(更少的能量消耗)时可以观察到这种关系。由于冷却速度高,与在炉中使用传统焊料回流工艺获得的结构相比,使用 RF 实现的 AuSn 接头的微观结构显示出非常细的相分布。在 100 kPa 压力下,对组装在活性金属钎焊基板上的 350 mm 厚硅二极管进行剪切试验,以评估接头的机械性能。RF 厚 60 mm,夹在两个 25 mm 厚的 96.5 Sn 3 Ag .5 Cu (SAC) 预制件之间。测试样品的空隙率约为 37%,剪切强度值超过 9.5 MPa,远高于 MIL-STD-883H 要求。最后,将工艺对组装二极管电气性能的影响与常用的焊料回流组件进行了比较,结果显示变化可以忽略不计。
随机访问内存(DRAM)和闪存已达到物理缩放限制。为了解决这个问题,在去年已经提出了新兴的记忆技术。[8-10],基于氧化还原的电阻随机访问记忆(RERAMS)因其CMOS兼容的制造,功能,多功能性和缩放潜力而受到特别关注。[1,11,12]它被认为是下一代存储记忆,内存档案计算和人工智能的重要组成部分。[3,8,10–12] RERAM是一种两端金属 - 绝缘子 - 金属细胞。绝缘层的电导率(通常是过渡金属氧化物)可以通过外部电刺激引起的离子调节调节。[11]氧化物膜具有传导金属阳离子,构值和氧离子/空位等离子的能力,因此通常称为固体电解质。[13–15]根据功能原理,两种类型的重新拉液特别有前途 - 电化学金属化记忆(ECM)和价值变化存储器(VCM)。[11,16,17] ECM细胞中的电阻转换依赖于在活性电极和反电极之间分别形成和溶解的金属丝。[16]丝的形成对应于设定的过程,在此过程中,细胞从高电阻状态(HRS)转换为低电阻状态(LRS)。设定的过程伴随着单个个体电化学过程,即活动电极的电离(氧化),金属阳离子在氧化物电解质中的扩散和计数器电极下的成核/生长。反向电势的应用通过氧化/溶解细丝将细胞转换回HRS,从而导致重置过程。电化学活性金属(例如Ag,Cu或它们的合金/化合物)通常用作活性电极。[13,18,19]反电极由PT,IR或化合物(例如TIN)等惰性材料制成。[18–20] VCM细胞由具有高功函数的底部电极组成(例如,PT,TIN),该电极与氧化物形成了Schottky界面。顶部电极具有电活性,通常是具有高氧亲和力(例如TA,Ti,HF)的金属,它允许氧化还原反应/离子交换并与氧化物形成欧姆接触,有利于氧气空位缺陷形成。[21,22]被广泛接受的是,VCM电池的电阻转换是通过通过迁移和氧气空位缺陷的重新分布来调节Schottky界面处的静电屏障。[11,23]
教育背景 1990 年获得英国剑桥大学化学系博士学位,从事高岭石及相关材料固态核磁共振研究(导师:Jacek Klinowski 教授)。随后在同一研究组从事博士后研究(沸石型材料核磁共振)。1997 年,他在葡萄牙阿威罗大学获得“Agregação”(任教资格)。 荣誉与奖项 • 欧洲科学院化学部官员 – EURASC(2014 年)和比利时皇家科学、文学和美术学院(2022 年)。他是里斯本科学院(成立于 1779 年)化学部 7 名常任理事之一(自 2006 年起),皇家化学学会会员(2016 年)和欧洲化学学会会员(2015 年)。 • 2012 年至 2014 年,他担任葡萄牙总理顾问,并担任国家科学技术委员会成员(该委员会中唯一的化学家)。 • 他曾于 2021 年获得葡萄牙化学学会 (SPQ) 颁发的 Alberto Romão Dias 奖(无机和有机金属化学奖),并于 2016 年获得 Ferreira da Silva 奖(SPQ 最高荣誉奖);法国化学学会颁发的法国-葡萄牙奖(2020 年);西班牙化学学会颁发的 Madinabeitia-Lourenço 奖(2015 年)。2005 年,他获得葡萄牙科学基金会颁发的科学卓越奖,1990 年获得剑桥大学伊曼纽尔学院颁发的奖(以表彰他在两年内完成博士学位)。 • 他协调了 2021 年和 2023 年 ERC Consolidator Grants 小组 PE11 材料工程。 科学记录 • Rocha 是所有领域被引用次数最多的葡萄牙科学家之一。他发表了约 550 篇 SCI 论文和 26 个书籍章节,引用次数约 29,000 次,Google Scholar h 指数为 81(Scopus 24,000 次引用,h 72),其中包括《自然》和《自然纳米技术》(2),以及影响力较大的化学和材料期刊,即《美国化学会志》(14)、《应用化学》(10)、《先进材料》(3)、《先进功能材料》(3)、《ACS Nano》(3)、《生物材料》(1)、《化学会志评论》(2)、《配位化学评论》(2)和 5 项专利申请。斯坦福大学和爱思唯尔在 2023 年的排名中将 Rocha 列为所有学科领域排名前 1% 的科学家,在无机和核化学领域排名前 0.2%(https://elsevier.digitalcommonsdata.com/research-data/)。他在会议(主要是国际会议)上发表了约 300 次受邀演讲。他指导了 43 名博士后和 36 名博士生。• 他协调了二十多个项目,这些项目获得了 1000 多万欧元的资助,包括 FCT 和 ANI 以及欧洲(作为国家 PI)的资助:JOULE(II),2 人力资本和流动性;大西洋地区材料网络 (INTERREG IIIB);ENERMAT,Espace Atlantic 计划,2007-2013 (INTERREG);卓越网络“混合和陶瓷的功能化先进材料工程 (FAME)”;欧洲,COST Action MP1202,“有机-无机混合界面的合理设计:迈向先进功能材料的下一步”,ITN-居里夫人行动,博士课程 IDS-FunMat。正在进行的项目:“光响应有机-无机混合多铁性材料:迈向多功能电子产品的途径”,PTDC/CTM-CTM/4044/2020。;“氧化还原活性金属有机骨架作为锂离子电池的电极材料”,PTDC/QUI-ELT/2593/2021。他为工业界提供广泛的咨询。他组织了许多(国际)国家科学活动,最近一次是“第 47 届 IUPAC 世界化学大会(巴黎,2019 年 7 月)”。他是该大会的计划委员会成员,也是研讨会 T.3:化学热点话题:通过化学创造更美好的世界”的共同组织者。