Loading...
机构名称:
¥ 1.0

随机访问内存(DRAM)和闪存已达到物理缩放限制。为了解决这个问题,在去年已经提出了新兴的记忆技术。[8-10],基于氧化还原的电阻随机访问记忆(RERAMS)因其CMOS兼容的制造,功能,多功能性和缩放潜力而受到特别关注。[1,11,12]它被认为是下一代存储记忆,内存档案计算和人工智能的重要组成部分。[3,8,10–12] RERAM是一种两端金属 - 绝缘子 - 金属细胞。绝缘层的电导率(通常是过渡金属氧化物)可以通过外部电刺激引起的离子调节调节。[11]氧化物膜具有传导金属阳离子,构值和氧离子/空位等离子的能力,因此通常称为固体电解质。[13–15]根据功能原理,两种类型的重新拉液特别有前途 - 电化学金属化记忆(ECM)和价值变化存储器(VCM)。[11,16,17] ECM细胞中的电阻转换依赖于在活性电极和反电极之间分别形成和溶解的金属丝。[16]丝的形成对应于设定的过程,在此过程中,细胞从高电阻状态(HRS)转换为低电阻状态(LRS)。设定的过程伴随着单个个体电化学过程,即活动电极的电离(氧化),金属阳离子在氧化物电解质中的扩散和计数器电极下的成核/生长。反向电势的应用通过氧化/溶解细丝将细胞转换回HRS,从而导致重置过程。电化学活性金属(例如Ag,Cu或它们的合金/化合物)通常用作活性电极。[13,18,19]反电极由PT,IR或化合物(例如TIN)等惰性材料制成。[18–20] VCM细胞由具有高功函数的底部电极组成(例如,PT,TIN),该电极与氧化物形成了Schottky界面。顶部电极具有电活性,通常是具有高氧亲和力(例如TA,Ti,HF)的金属,它允许氧化还原反应/离子交换并与氧化物形成欧姆接触,有利于氧气空位缺陷形成。[21,22]被广泛接受的是,VCM电池的电阻转换是通过通过迁移和氧气空位缺陷的重新分布来调节Schottky界面处的静电屏障。[11,23]

设计用于优化氧化还原的材料配置...

设计用于优化氧化还原的材料配置...PDF文件第1页

设计用于优化氧化还原的材料配置...PDF文件第2页

设计用于优化氧化还原的材料配置...PDF文件第3页

设计用于优化氧化还原的材料配置...PDF文件第4页

设计用于优化氧化还原的材料配置...PDF文件第5页

相关文件推荐

2022 年
¥1.0
2020 年
¥2.0
2021 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0