机载激光扫描 (ALS) 是一种遥感技术,基于测量从飞机发射并被地面物体反射的激光脉冲的飞行时间。过去二十年,全球定位系统、惯性导航和激光技术的进步使其快速发展。最初,飞机或卫星上的 LiDAR(光检测和测距)传感器仅在平台路径上的一维 (1D) 剖面上运行。现在,传感器配备了定位装置,能够扫描平台轨迹上的大片区域。到 20 世纪 90 年代末,小型商用传感器的脉冲重复频率约为 10 kHz [1],服务提供商才刚刚兴起。现在,领先的传感器利用多脉冲技术实现了 300 kHz 的脉冲重复频率。一些国家已经实现了完整的 LiDAR 覆盖(瑞士、丹麦),而另一些国家(芬兰、瑞典)正在进行全面测绘。
20 世纪 70 年代初,美国国防部 (DOD) 希望保证军事用途的稳定、可访问的卫星导航系统。国防部于 1978 年发射了第一颗带授时和测距卫星的导航系统;24 颗卫星系统于 1993 年达到全面运行能力 (FOC)。4 国防部不断努力改进其卫星和系统;最新的 GPS 卫星组 GPS III/IIIF 于 2018 年发射。这些改进有助于保持 GPS 作为 GNSS 的黄金标准。5 截至 2021 年 6 月,共有 31 颗运行卫星在轨,包括新旧卫星和在轨备用卫星。6 GPS 目前提供两种级别的服务:标准定位服务,可在全球范围内持续向所有用户提供,不收取任何直接用户费用;以及精确定位服务,其访问仅限于美国武装部队,
缩略词 AHPS 高级水文预报服务 CNMS 协调需求管理战略 CSC 海岸服务中心 CTP 合作技术伙伴 DEM 数字高程模型 FEMA 联邦应急管理局 FGDC 联邦地理数据委员会 FIM 洪水淹没制图 FIRM 洪水保险费率图 FIS 洪水保险研究 GCS 地理坐标系统 GIS 地理信息系统 H&H 水文和水力学 HEC-HMS 水文工程中心水文建模系统 HEC-RAS 水文工程中心河流分析系统 HUC 水文单位代码 HWM 高水位线 LiDAR 光检测和测距 NAD 北美基准 NADCON 北美基准转换 NAVD 北美垂直基准 NFIP 国家洪水保险计划 NGS 国家大地测量局 NOAA 国家海洋和大气管理局
本文提供了一种使用自动测试设备 (ATE) 评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源 (SSS) 的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向测距 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不为零。
2013 年 5 月,在德国考古研究所 (DAI) 的指导下,MayaArch3D 项目 (http://www.mayaarch3d.org) 委托开展一项机载 LiDAR(光探测和测距)任务,以收集联合国教科文组织世界遗产地和洪都拉斯科潘古玛雅城市周围景观的遥感数据。这项任务有四个目标:首先,为科潘的研究和文化资源管理生成新的、更准确的考古地图。第二,定位以前未记录的考古结构或特征。第三,结合 LiDAR 和地面检查数据,以提高生态和地形多样化景观的数据准确性。第四,开发新的 LiDAR 数据集,这些数据集可以与其他考古数据集成并托管在 3D WebGIS 中,以增强研究人员、文化遗产管理者和公众的数据可访问性和研究可能性,同时通过向不同用户组提供适当的访问级别来保护专有数据。
ACHP 历史保护咨询委员会 ADLS 飞机探测照明系统 AIS 自动识别系统 AOC 关注区域 ASLF 古代水下地貌特征 BiOp 生物学观点 BOEM 海洋能源管理局 BPU 公用事业委员会 BSEE 安全和环境执法局 CEQ 环境质量委员会 CFR 联邦法规 COP 建设和运营计划 CR 保护建议 CWA 清洁水法案 DA 美国陆军部 DOI 内政部 EA 环境评估 EFH 基本鱼类栖息地 EIS 环境影响声明 EPA 美国环境保护署 ESA 濒危物种法案 FLiDAR 浮动灯和探测测距浮标 FONSI 无重大影响发现 ft 英尺/英尺 GHG 温室气体 GIS 地理信息系统 GW 千兆瓦 GWh 千兆瓦时 HDD 水平定向钻井
无人自由气球 (UFB)、高空长航时 (HALE) 无人系统和重新引入的超音速客机预计将在 600 飞行高度 (FL600) 以上日益活跃。预计上层 E 级交通管理 (ETM) 系统将支持这些操作。与 60,000 英尺 (ft) 以下的空中交通管理 (ATM) 环境类似,ETM 车辆将采用导航。本文讨论了现有的地面、卫星和机载导航替代方案及其对 ETM 的适用性。这些系统包括甚高频 (VHF) 全向测距 (VOR)、测距设备 (DME)、战术空中导航 (TACAN) 和全球导航卫星系统 (GNSS),包括全球定位系统 (GPS,带增强和不带增强)。此外,本文还讨论了基于飞机的技术,例如惯性导航系统 (INS)。这些导航技术的评估依据包括总体优势、劣势、当前对 ETM 的支持水平以及实现或增强 ETM 支持所需的变更。
无需进行物理(机械)接触,主要通过传输信号和由此产生的反射来了解表面、物体或现象。特别是,基于激光雷达(光检测和测距)和飞行时间信号处理的光学扫描已成为一种无处不在的技术,目前已提出了许多变体。这项技术最近受到学术界和工业生物力学界的广泛关注,这得益于人体扫描仪的不断发展。应用范围从可以快速捕获整个人体的 3D 人体扫描仪,例如用于假肢设计、生物力学运动分析、肿瘤表面扫描、健身扫描、法医分析、异常检测、数值生物力学模型生成(网格划分)和虚拟现实化身的创建。这种技术基于扫描激光雷达,它每秒产生数千个窄带宽脉冲并扫描一个域,使用信号飞行时间分析来确定表面轮廓。本质上,生成了立体 3D 图像。这
光探测和测距 (lidar) 测绘是一种公认的方法,可以生成有关地球形状和表面特征的精确且直接的地理参考空间信息。lidar 测绘系统及其支持技术的最新进展使科学家和测绘专业人员能够以前所未有的准确性、精确度和灵活性在广泛的范围内检查自然环境和人造环境。过去五年发布的几份国家报告强调了 lidar 数据的价值和迫切需求。国家增强高程评估 (NEEA) 调查了 200 多个联邦、州、地方、部落和非政府组织,以更好地了解它们如何使用增强高程数据,例如 lidar 数据。由此产生的 400 多项功能活动被分为 27 种预定义的业务用途,以进行汇总和成本效益分析 (NDEP, 2012)。其中一些活动将在本文档的应用部分中更详细地描述。
该方法在《光科学与应用》杂志的一篇新文章中进行了详细介绍,文章名为《用于高效、广角、高精度光束控制的微型平面望远镜》,该方法解决了当前技术的固有局限性。也就是说,从自动驾驶汽车上的光检测和测距 (LiDAR) 到高精度卫星对卫星通信等所有领域所使用的技术只能在有限的范围内提供准连续的控制。吴建议利用具有数百年历史的科学工具加上现代元素来扩大控制范围:即采用现代液晶光学器件的望远镜。基于这一想法,吴和同事们展示了基于液晶聚合物平板光学器件的轻巧、经济高效的微型平面望远镜,用于光学角度放大。这代表了平面液晶光学器件超越当前发展的新里程碑。
