矩形和梯形舵为 1.0,位于舵后方的舵除外;半桨舵为 0.95(图中 I、I I、V I I 和 V I I I 型舵。2.2.4.1); 0,89 位于舵柱后面的舵(图中 I V 、 X 和 X I I I 型舵。2.2.4.1);
背景。在观测和模拟中,人们在光球层、色球层和低日冕中发现了涡流。有人认为涡流在将能量和等离子体引入日冕方面发挥着重要作用。然而,涡流对日冕的影响尚未在现实环境中直接研究过。目的。我们使用高分辨率日冕环模拟研究涡流对日冕加热的作用。涡流不是人为驱动的,而是由磁对流自洽产生的。方法。我们使用 MURaM 代码执行了 3D 电阻(磁流体动力学)MHD 模拟。在笛卡尔几何中研究孤立的日冕环使我们能够解析环内部的结构。我们进行了统计分析,以确定涡流特性与色球层到日冕高度的关系。结果。我们发现,注入环路的能量是由强磁性元素内部相干运动产生的。由此产生的坡印廷通量的很大一部分通过涡流管穿过色球层,从而在光球层和日冕之间形成磁连接。涡流可以形成连续的结构,达到日冕的高度,但在日冕本身中,涡流管会变形,并最终随着高度的增加而失去其特性。涡流在色球层和日冕中都显示出向上指向的坡印廷通量和加热速率增加,但随着高度的增加,其影响变得不那么明显。结论。虽然涡流在色球层和低日冕中的能量传输和结构中起着重要作用,但它们在更高大气层中的重要性尚不清楚,因为漩涡与周围环境的区分度较差。到达日冕的涡流管揭示了与日冕发射的复杂关系。
最近,有研究表明,在非中心相对论重离子碰撞中,椭圆流 v 2 在有限快速度下会分裂,这是由于全局涡度所致。在本研究中,我们发现有限快速度下椭圆流的这种左右(即在撞击参数轴的两侧)分裂是由于非零定向流 v 1 所致,其分裂幅度 ≈ 8 v 1 (1 − 3 v 2 ) / (3 π )。我们还使用多相传输模型(该模型自动包含涡度场和流动波动)来确认 v 2 分裂。此外,我们发现,对于相对于一阶或二阶事件平面测量的原始 v 2 和 v 1(即在应用事件平面解析之前),v 2 分裂的分析预期都成立。由于 v 2 分裂主要是由 v 1 驱动的,因此它在零横向动量( p T )时消失,而且它的大小和符号可能对 p T 、中心性、碰撞能量和强子种类具有非平凡的依赖性。
我们已经写出了水流方程。从实验中,我们找到了一组概念和近似值来讨论解决方案——涡街、湍流尾流、边界层。当我们在不太熟悉的情况下遇到类似的方程,并且还不能进行实验时,我们会尝试以一种原始、停滞和混乱的方式求解方程,以确定可能出现哪些新的定性特征,或者哪些新的定性形式是方程的结果。
我们详细介绍了机器学习自动级别的成功部署,该机器自动级别大大降低了分组计算机科学分配所需的分级人工。这项任务(将学生都任命为编程的游戏,该游戏由一个可控制的桨和一个球从桨上弹跳以折断砖头的游戏 - 很受欢迎,因为它吸引了具有入门计算机智能概念的学生,但产生了巨大的分级负担。由于游戏的互动性质,评分违反了传统的单元测试,而通常需要手动玩每个学生的游戏以搜索错误。这相当于标准课程提供的45小时的评分,并防止了进一步的分配。我们的自动骑士通过与强化学习者和为教师的发现错误的视频进行了每种学生游戏,从而减轻了这一负担。在用手动分级的A/B测试中,我们发现我们的人类AI自动载体将评分时间减少了44%,同时将分级准确度略有提高6%,最终在两份分配的产品中节省了大约30小时。我们的结果进一步表明,通过类似的机器学习技术对其他交互式作业(例如其他游戏或构建网站)进行分级的实用性。https://ezliu.github.io/breakoutgrader的实时演示。
背景。河外等离子体喷流是少数能够限制超高能宇宙射线的天体物理环境之一,但它们是否能够加速这些粒子尚不清楚。目的。在这项工作中,我们通过考虑喷流的整体横向结构,重新审视了超出局部均匀场近似的相对论磁化冲击下的粒子加速。方法。使用相对论电子离子等离子体喷流的大型二维粒子模拟,我们表明在与周围介质的界面处形成的终止冲击将粒子加速到限制极限。结果。喷流磁场的径向结构导致相对论速度剪切,从而激发下游介质中的冯·卡门涡街,该涡街尾随充满宇宙射线的过压气泡。粒子在每次穿过剪切流边界层时都会得到有效加速。结论。这些发现支持了河外等离子体喷流可能能够产生超高能宇宙射线的观点。这种极端粒子加速机制也可能适用于微类星体喷流。
课程内容•雌性骨盆的正常和病理解剖结构•基于图像的解剖结构,包括我们,诊断时的CT,MRI和常规放射线照相术,在BT•GTV/CTV-HR,CTV-HR,CTV-LR // PTV,用于IG-IMRT和治疗计划概念•ITV和适应性EBRT方法。•GTV-RES,CTV-HR,CTV-IR,剂量处方,D90的概念,D98的靶标和2 cc的桨。•放射性辐射和近距离疗法的放射生物学效应和组合,使用EQD2
摘要在超旧能量时在核冲突中产生的热QCD物质的特征在于,在早期平衡阶段中,在早期平衡阶段的最大强度,并与高等化的强度涡度相互作用,由大型角膜动量造成的碰撞系统诱导。 可观察到的这些现象的可观察到的痕迹是在符号和不对称重型离子碰撞以及质子诱导的反应中产生的浅黑龙和重室的定向流。 尤其是,在具有相同质量但相反的电荷的粒子之间将定向流的分裂作为速度和横向动量的函数,可访问所有碰撞阶段和不同往返系统中培养基的电磁响应。 在煤的前平衡阶段设想了电磁场的最高影响,因此早期产生的重型夸克留下了显着的烙印。 这篇综述的目的是讨论当前嵌入大小系统中电磁场的产生和放松时间的发展,及其对电荷型光和重颗粒的影响,突出了实验结果以及不同的观点方法。 由于可以对高能碰撞进行逼真的模拟,这些模拟还结合了产生的电磁场和涡度,因此对定向流的研究可以提供对早期非平衡阶段以及QGP形成和运输特性的独特见解。在超旧能量时在核冲突中产生的热QCD物质的特征在于,在早期平衡阶段中,在早期平衡阶段的最大强度,并与高等化的强度涡度相互作用,由大型角膜动量造成的碰撞系统诱导。可观察到的这些现象的可观察到的痕迹是在符号和不对称重型离子碰撞以及质子诱导的反应中产生的浅黑龙和重室的定向流。尤其是,在具有相同质量但相反的电荷的粒子之间将定向流的分裂作为速度和横向动量的函数,可访问所有碰撞阶段和不同往返系统中培养基的电磁响应。在煤的前平衡阶段设想了电磁场的最高影响,因此早期产生的重型夸克留下了显着的烙印。这篇综述的目的是讨论当前嵌入大小系统中电磁场的产生和放松时间的发展,及其对电荷型光和重颗粒的影响,突出了实验结果以及不同的观点方法。由于可以对高能碰撞进行逼真的模拟,这些模拟还结合了产生的电磁场和涡度,因此对定向流的研究可以提供对早期非平衡阶段以及QGP形成和运输特性的独特见解。
对为期 4 个月的滑翔机任务进行了分析,以评估亚热带北大西洋西部边界反气旋涡旋中的湍流耗散。涡旋(半径 < 60 公里)的核心低位势涡度在 100 至 450 米之间,最大径向速度为 0.5 ms21,罗斯贝数 < 20.1。湍流耗散是根据滑翔机飞行模型得出的垂直水速推断出来的。耗散在涡旋核心中受到抑制(< = 53 102 10 W kg21),在其下方增强(.102 9 W kg21)。升高的耗散与垂直速度和压力扰动的准周期结构相一致,表明内部波是耗散的驱动因素。启发式射线追踪近似法用于研究导致湍流耗散的波浪-涡旋相互作用。射线追踪模拟与两种可能导致耗散的波浪-涡旋相互作用相一致:近惯性波能量被涡旋的相对涡度捕获,或内部潮汐(在附近的大陆坡产生)进入涡旋剪切的临界层。后一种情况表明,表征海洋盆地西部边界的强烈中尺度场可能充当“漏墙”,控制内部潮汐向盆地内部传播。