Moiré材料的兴起导致了小型或消失的磁场中整数和FCI的实验实现。同时,确定了一组最小条件,足以保证在平坦带中的阿贝尔分数状态,即“理想”或“可涡流”量子几何形状。这种可涡流带与LLL共享基本特征,同时不需要对诸如Flat Berry曲率等更微调的方面。自然而重要的概括是询问是否可以扩展此类条件以捕获较高的Landau水平的量子几何形状,尤其是第一个(1LL),在ν= 1/2 = 1/2、2/5处的非亚伯利亚状态已知具有竞争力。如果我们能够确定Chern频段中1LL的基本结构,那么在零磁场上实现这些状态的可能性也可能成为现实。在这项工作中,我们介绍了1LL量子几何形状的精确定义,以及一个功绩的图形,该数字可以测量给定频段接近1LL的程度。周期性紧张的伯纳尔石墨烯也显示出即使在零磁场中也实现了这样的1LL结构。
增材制造技术提供了在局部层面创建和修改材料成分和结构的各种可能性,但往往容易出现不良缺陷和不均匀性。本贡献利用这些缺陷在金属中生成材料固有的隐藏代码和水印,用于认证和防伪应用。通过受控和随机的工艺变化,使用激光粉末床熔合 (L-PBF) 和激光定向能量沉积 (L-DED) 工艺产生了可以通过涡流设备读取和认证的唯一代码。提出了两种方法:首先,使用 L-PBF 制造具有确定形状的体积多孔结构。其次,通过交替工艺参数的 L-DED 制造涂层,导致磁导率的局部偏差。这种非确定性编码方法产生了一种独特的材料结构,可在涡流测量中触发高信号幅度。由于熔池动力学不可复制,伪造变得不可能。统计假设检验证明,该系统能够以 5 亿分之一的确定性防止错误接受或拒绝代码。一种新型锁定系统的低成本设置表明,可以在一秒钟内可靠地感知代码。
南方海洋在全球碳循环中起着基本作用,主导着通过寄生的寄生和碳的海洋吸收,并通过寄生的碳和碳来调节过去,现在和将来的气候中的大气碳浓度。然而,在那里发现的遥远和极端的条件使南大洋永远成为地球上最困难的地方之一和建模,从而在我们对海洋碳循环的了解中显着和持久的不确定性。传统上使用区域均值框架来理解南大洋中碳的流动,其中子午过度转向循环驱动在空气 - 海量通量和内部海洋碳浓度中观察到的纬度变异性。然而,最近的进步主要取决于范围内的观察和建模能力,揭示了在较小尺度上作用的过程的重要性,包括盆地尺度的划分区域不对称的混合层深度,中尺度涡流涡流,以及高度大气的差异,并超出了范围的范围,并弥补了范围的范围,并在范围内进行了范围,并在范围内进行了范围的范围。对南大洋中的碳循环有四维的理解。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
摘要X/γ-砂在实验室天体物理学和粒子物理学中具有许多潜在的应用。已经提出了几种具有角动量(AM)的电子,正电子和X/γ-光子束的方法,但超强度的亮γ射线的产生仍然具有挑战性。在这里,我们提出了一个全光方案,以产生具有大型束角动量(BAM),小差异和高光彩的高能量γ-光束。在第一个阶段,强度为10 22 W/cm 2的圆形极化激光脉冲辐射一个微通道目标,从通道壁上拖出电子,并通过纵向电力场将它们加速到高能。在此过程中,激光将其自旋角动量(SAM)转移到电子轨道角动量(OAM)。在第二阶段,驱动脉冲通过附着的风扇翼反映,因此形成了涡流激光脉冲。在第三阶段,能量电子与反射的涡流脉冲正面碰撞,并通过非线性康普顿散射将其AM传递到γ-播种。三维粒子中的模拟表明,γ射线束的峰值光彩为〜10 22
对最近发现的高温超导体THH 10提出了对涡旋阶段和涡流动力学的全面研究,其在170 GPA时T C = 153 K。获得的结果强烈表明涡流相变的二维(2D)特征在Thh 10中。激活能在低场区域的磁场上产生对数依赖性u 0 ln(h),而在高场面中,幂律依赖性u 0〜H-1在高场区域中,向从2D状态到三维集体固定方案的交叉信号。此外,固定力局部依赖性展示了在t c附近的表面型固定的优势。热激活能(U 0),衍生在热活化的流动流理论中,将非常高的值与Ginzburg Number GI = 0一起以高于2×10 5 k的速度。039–0。085,仅比Bisrcacuo酸盐和10-3-8个基于铁的超导体家族低。这表明热闪光在超水的涡旋晶格的动力学中的巨大作用,其物理学类似于基于铁和铜的高温超导体的物理学。
・控制螺旋桨转速和测量容器内的流速,设定螺旋桨推力。保持螺旋桨推力恒定,从未发生空化的状态开始,逐渐降低测量室内部的静压,测量发生尖端涡流空化时的静压。 - 根据测量的静压和螺旋桨运行情况估算实际船速,并评估空化开始速度。
飞行研究 (RIF) 和奥本大学正在开发一种先进、强大的工具,该工具可以模拟和建模分布式电力推进 (DEP) 支持的城市空中交通 (UAM) 车辆概念的阵风和尾流涡流遭遇。这将允许在设计周期的早期发现车辆设计中的潜在缺陷,并在必要时使用阵风载荷缓解技术进行缓解。
第4章。应用程序。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 4.1。阴极保护(CP)监测。。。。。。。。。。。。。。。。。。。。10 4.2。检测和跟踪。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 4.3。图像处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 4.4。光纤分析。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 4.5。超声波引导波测试(GWT)。。。。。。。。。。。。。。。。。。。21 4.6。超声测试(UT)。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 4.7。磁通量泄漏(MFL)。。。。。。。。。。。。。。。。。。。。。。。。23 4.8。涡流检查(ECI)。。。。。。。。。。。。。。。。。。。。。。。。24 4.9。射线照相测试(RT)。。。。。。。。。。。。。。。。。。。。。。。。。。26
强烈的涡流梁有望赋予吸引人的现象和在高功率激光 - 物质相互作用中的应用。当前,多个涡流束的叠加显示了量身定制和增强涡流场的独特能力。但是,产生此类光束的传统策略遭受了大量或/和低激光诱导的损坏阈值的影响,从而阻碍了实际的广泛应用。在此,提出了一个高阈值跨表面,并通过实验证明了多个共线涡流梁的产生和叠加。该方案通过在方位角方向采用切片相模式的概念来利用元图设计中仅相位调制的高转换效率。实验可以实现具有增强强度和稳定空间传播的光点。此外,飞秒激光诱导的嵌入二氧化硅玻璃中的双重双向纳米结构被用作具有高光学效率的构件。透射率大于99.4%,并且在实验中验证了激光诱导的损伤阈值高达68.0 J/cm 2(在1064 nm,6 ns)的损伤阈值。考虑到这些出色的性能,所证明的高阈值超脸在许多高功率激光场中具有有希望的应用。