膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路
摘要 选择性激光熔化工艺代表了生物医学领域制造定制植入物的一个有趣机会。然而,通过增材制造获得的部件的表面粗糙度是一个主要限制因素,并且会影响表面润湿性。在这项研究中,采用化学蚀刻来解决这一问题。为此,分析了化学蚀刻参数(如浸入时间和溶液成分)对表面粗糙度、重量损失和润湿性的影响。考虑了不同的样品(通过不同的打印方向获得)。测试表明,由于化学蚀刻,表面的粗糙度和润湿性得到改善。主要结果表明,对表面润湿影响最大的参数是两个:粗糙度和材料特性(随样品深度而变化)。
本文介绍了 Al-Si-Zn 填充金属在 AR 500 钢和 AA 7075 铝合金表面润湿和铺展的实验研究结果。通过不同表面条件下的接触角和铺展比分析了填充金属在金属表面的润湿和铺展情况。接触角是测量液-气界面切线与固体表面之间的角度。而铺展比是根据填充金属铺展形状几何直径的变化来测量的。低熔点填充金属的使用越来越受欢迎,因为它们能够降低热量对金属的影响。然而,低铺展和脱湿条件限制了填充金属的应用,因为这些条件会对接头能力产生不利影响。但总的来说,这项针对这些金属的不同表面条件的研究是为了确定填充金属的润湿和铺展行为。本研究将通过火炬钎焊加热的 Al-Si-Zn 填充金属应用于具有不同表面条件的 AR 500 钢和 AA 7075 铝合金表面。实验结果表明,与粗糙的金属表面相比,填充金属在光滑表面上的扩散面积更大。
研究二维材料时,一种常见的方法是将它们支撑在固体基底表面上。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须使离子与电解质接触。二维材料中特定离子相对于对电极的化学势差为离子插入提供了可控的驱动力。尽管基底本身可以充当固态电解质,例如离子导电玻璃陶瓷,[10–12] 但支撑二维材料层之间的离子插入可能会受到阻碍,因为有效插入通常通过边缘或缺陷位进行。从顶部涂抹电解质时更有可能覆盖这些位置——这种方法近年来被广泛使用,主要用于静电门控。 [13,14] 为了系统地解决离子插入和传输问题,将电解质与 2D 材料以图案化方式整合在一起非常重要,例如,对离子扩散过程施加方向性。这主要是样本大小和图案分辨率问题,在 100 µm 及以上的规模上可以解决,例如通过固态电解质的增材制造 [15] 或液态电解质的喷墨打印。[16–18] 目前,这些方法的局限性在于打印分辨率以及电解质的机械性能。因此,粘稠电解质或离子凝胶更容易打印,[16] 而一系列低粘度电池级电解质(如碳酸乙烯酯/碳酸二乙酯中的 LiPF 6)则不然。这些电解质往往很容易润湿样品的大部分表面,必须
要研究2D材料,一种共同的途径是在固体基板的表面上支撑它们。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须与电解质接触。相对于计数器电极,给定的2D材料中给定的离子物种的化学潜力差异为离子插入的驱动力提供了可以控制的驱动力。尽管底物本身可以用作固态电解质,例如在离子导电玻璃陶瓷的情况下,[10-12]在受支持的2D材料的层之间插入离子插入可能会受到阻碍,因为通常有效地插入了通常通过边缘或缺陷站点进行有效插入。在从顶部施加电解质时,覆盖它们的可能性更大 - 近年来,这种方法主要用于静电门控。[13,14]为了以系统的方式插入和运输的目的解决,重要的是以图案化的方式将电解质与2D材料集成在一起,例如在离子扩散过程上强加方向性。这主要是样本量和模式分辨率问题,可以通过100 µm及以后的规模来解决,例如,通过固态电解质的添加剂制造[15]或通过对液体的喷墨打印。[16–18]这些方法的当前局限性是通过打印分辨率以及通过电解质的机械性能来设置的。这些往往很容易弄湿样品表面的大部分,必须因此,粘性电解质或离子 - 凝胶更直接地打印[16],而一系列低粘度电池级电解质(例如碳酸乙酯/碳酸乙酯中的LIPF 6)不是。
摘要 焊料的润湿性对于实现电子元件和印刷电路板 (PCB) 之间的良好可焊性非常重要。锡 (Sn) 镀层被广泛用于促进焊料在基板上的润湿性。然而,必须考虑足够的锡镀层厚度才能获得良好的润湿性和可焊性。因此,本研究调查了电子引线连接器的锡镀层厚度及其对润湿性和电连接的影响。在电子引线连接器表面应用了两种类型的锡镀层厚度,~3 μm 和 5 μm。研究发现,~3 μm 的薄锡镀层厚度会导致电连接失败,并且焊点润湿性和可焊性不足。5 μm 的较厚锡镀层厚度表现出更好的润湿性和可焊性。此外,电连接也通过了,这意味着较厚的锡镀层厚度提供了良好的焊点建立,从而带来了良好的电连接。还观察到,较厚的锡镀层厚度实现了更好的焊料润湿性。场发射扫描电子显微镜 (FESEM) 的结果表明,对于较薄的锡镀层厚度 (~3 μm),引线连接器表面的金属间化合物 (IMC) 层生长被视为异常,其中 IMC 层被消耗并渗透到锡涂层的表面。这导致薄锡镀层与焊料的可焊性较差,无法形成焊点。本研究的结果有助于更好地理解考虑足够的锡镀层厚度的重要性,以避免锡镀层处的 IMC 消耗,以及更好的润湿性、可焊性和焊点质量,这对于表面贴装技术 (SMT) 尤其适用于电子引线连接器应用。
摘要 宽温度范围内液滴可控操控在微电子散热、喷墨打印、高温微流控系统等领域有着广阔的应用前景。然而,利用工业上常用的方法构建可控液滴操控平台仍然是一个巨大的挑战。流行的液滴控制方法高度依赖于外界能量输入,对液滴运动行为和操控环境(如距离、速度、方向和宽温度范围)的可控性相对较差。本文报道了一种简便易行、工业适用的制备Al超疏水(S-phobic)表面的方法,该表面能够在宽温度范围内控制液滴的弹跳、蒸发和传输。并进行了系统的机理研究。采用电化学掩模刻蚀和微铣削复合工艺在Al基底上制备了极润湿性表面。为了研究蒸发过程和热耦合特性,进行了宽温度范围内液滴的受控蒸发和受控弹跳。基于液滴在极端润湿性表面的蒸发调控和弹跳机理,利用拉普拉斯压力梯度和温度梯度,实现了在较宽温度范围内合流、分流、抗重力输运的液滴受控输运,为新型药物候选物、水收集等一系列应用提供了潜在的平台。
摘要:研究了ZnO纳米粒子增强的Sn99Ag0.3Cu0.7(SACX0307)焊料合金的性能。ZnO的原始粒径为50、100和200nm。它们以1.0wt%的比例添加到焊膏中。研究了复合焊料合金/接头的润湿性、空洞形成、机械强度和热电参数。此外,还使用扫描电子和离子显微镜进行了微观结构评估。ZnO纳米粒子降低了复合焊料合金的润湿性,从而增加了空洞形成。尽管如此,复合焊料合金的剪切强度和热电参数与SACX0307参考相同。这可以通过ZnO陶瓷对Sn晶粒以及Ag 3 Sn和Cu 6 Sn 5金属间化合物晶粒的细化作用来解释。这可以弥补较低润湿性的不利影响。在改善润湿性并使用更多活性助焊剂后,ZnO 复合焊料合金有望用于高功率应用。
带有特殊润湿性(MAAMS-SW)的摘要生物启发的宏观结构阵列(MAA,尺寸:亚毫米计至毫米尺度)材料,由于其在许多应用中的出色表现,包括石油剥夺,液体/液滴操纵,抗气管操纵,抗气管,传热,收集,水收集和油 - 水分,引起了大量的研究注意。在这篇综述中,我们关注的是生物启发的Maams-SW的理论,设计,制造和应用的最新发展。我们首先回顾了特殊润湿性的基本理论的历史,并讨论了某些生物表面的代表性结构和相应的功能,从而为生物启发的MAAMS-SW的设计和制造奠定了基础。然后,我们总结了特殊润湿MAA的制造方法,分别是三类:添加剂制造,减法制造和形成性制造,以及它们的多样化功能应用,从而为这些Maams-SW的开发提供了见解。最后,简要解决了对生物启发的MAAMS-SW的未来研究的挑战和方向。全球努力,进步和突破性从表面工程到本文详细阐述的功能应用将促进生物启发的MAAMS-SW的实际应用。
数字微流控芯片是一种液体处理器,利用电润湿效应移动、合并和分裂液滴,从而进行生化分析。然而,一旦包含几十个以上的电极,硬接线电润湿芯片就会变得繁琐。单面连续光电润湿,其中无特征半导体膜的电润湿效应由光图案控制,是解决这一硬接线瓶颈的有希望的解决方案,但到目前为止,二维液滴操控仍然很困难。在这里,我们演示了通过使用 Z 形光图案沿任意方向操纵液滴,这些光图案将电场旋转任意角度。我们提供了一个驱动液滴朝不同方向移动的理论模型。它通过 Comsol 模拟和实验进行了验证。凹槽宽度的优化使 y 方向的驱动电压大大增加。该芯片可以以 4.86 mm/s 的最大速度沿 y 方向移动染色水滴。这种多维液滴驱动为单侧连续光电润湿开辟了新的可能性,例如合并不在一条线上的液滴、高效液滴混合以及绕过液滴以避免聚结。