除富裕国家外,发达国家和新兴国家对能源的需求也在逐渐增加,这也带来了重大挑战。不可再生/传统能源(即石油、天然气和煤炭)的枯竭之后,温室气体 (GHG) 排放量不断增加,加剧了全球变暖。1,2 因此,需要对可再生能源进行管理和适当使用。可再生能源通常由太阳能、风能、潮汐能、生物质能和地热能产生。3,4 最近发现,由于大多数国家都遵循清洁生产政策,依赖可再生能源的发电量迅速增加。5 建议到 2050 年将二氧化碳排放量减少 90%,6 这样才能按照建议将全球变暖效应降低到 2°C 以下。因此,能源生产部门必须完全脱碳,并增加对可再生能源的依赖。与传统能源不同,可再生能源清洁、易得、取之不尽。它们发展迅速,而且
持续的低海冰范围是导致海洋地表水域变暖的贡献者。2022年的北极海冰范围与2021年相似,远低于长期平均水平。超越海冰范围向海冰时代(与海冰厚度有关(较老的海冰)相关的海冰时代,揭示了更多的清醒观察。北极已经从以多年冰为主导的地区过渡到以一年级(季节性)海冰为主的地区。,虽然海冰大于四岁,但2006年9月覆盖了100万公里,但在2022年9月仅覆盖127,000公里2。可能与高纬度海洋温度升高和海冰降低有关的一种影响是近期在阿拉斯加沿海沿海观察到的海鸟死亡的近期实例(请参见Sidebar 5.2)。这个和其他生态系统的影响,包括鱼类,海洋哺乳动物和陆基食品来源的气候变化,是北极土著人民和居民的严重关注,因为粮食安全和生态系统健康(例如,Search等人 2022; Crozier等。 2021; Mallory and Boyce 2018)。2022; Crozier等。2021; Mallory and Boyce 2018)。
本文档中包含的信息是 Sumitomo SHI FW 和 encoord GmbH 的专有信息,并以保密形式披露。未经版权所有者事先书面许可,不得以任何形式或任何方式复制或复印本文档的任何部分。本文档中提供的数字和值仅供参考,不应被视为或理解为 Sumitomo SHI FW 或 encoord GmbH 提供的保证。Sumitomo SHI FW 和 encoord GmbH 就此准备或提供的所有文件(包括但不限于图纸和规格)均不旨在或表示适合他人在生产或任何其他项目中重复使用。未经 Sumitomo SHI FW 和 encoord GmbH 事先书面授权和(视情况而定)验证或改编而进行的任何重复使用均由客户自行承担风险,Sumitomo SHI FW 或 encoord GmbH 不承担任何责任或法律责任。
摘要:神经电极是神经科学、神经疾病和神经机接口研究的核心设备,是连接大脑神经系统和电子设备的桥梁。目前使用的大多数神经电极都是基于刚性材料,其柔韧性和拉伸性能与生物神经组织有显著不同。本研究采用微加工技术开发了一种基于液态金属 (LM) 的 20 通道神经电极阵列,该阵列采用铂金属 (Pt) 封装材料。体外实验表明,该电极具有稳定的电性能和优异的机械性能,如柔韧性和弯曲性,使电极与颅骨形成保形接触。体内实验还使用基于 LM 的电极从低流量或深度麻醉下的大鼠记录了脑电信号,包括由声音刺激触发的听觉诱发电位。使用源定位技术分析了听觉激活的皮层区域。这些结果表明,基于 20 通道 LM 的神经电极阵列满足脑信号采集的需求,并提供支持源定位分析的高质量脑电图 (EEG) 信号。
EMI 屏蔽效能 (EMI SE) 定义为入射功率 (PI) 与发射功率 (PT) 的对数比,单位为分贝 [S1],用于评估材料屏蔽电磁波的性能。一般而言,EMI SE(单位为 dB)越高,电磁波穿过屏蔽层的效果越差。EMI SE 实验上由散射参数 S 11 和 S 21 得出,这两个参数由矢量网络分析仪 (N5234B, KEYSIGHT) 在 8.2 – 12.4 GHz 频率范围内测得,它们的关系如下 [S2, S3] 所示:
在使用寿命期间表现出稳健的机械性能,同时又能在使用寿命结束时分解的装置是各种生物医学应用所迫切需要的,包括长期药物输送和传感器集成健康监测。这类技术可以通过使用可触发材料来实现,这些材料会在受到外界刺激时分解。[1–7] 与被动触发材料(通过水解或氧化等机制与环境发生反应而分解)相比,主动触发材料会在受到外源刺激时分解(图 1 A)。[1] 因此,主动触发材料使生物医学技术具有适应性和可预测性,随着使用寿命的增加,这两者都变得尤为重要和具有挑战性。
摘要 裂纹控制策略已被证明对于增强基于金属薄膜的可拉伸导体的拉伸能力非常有用。然而,现有的策略往往存在制备复杂和有效方向预定的缺点。在这里,我们提出了一种裂纹补偿策略,用于制备具有高拉伸性的导体,即使用液态金属微粒 (LMMPs) 嵌入聚二甲基硅氧烷 (PDMS) 作为基底,在其表面溅射一层薄薄的金 (Au) 薄膜。LMMPs 在拉伸时可以拉长以连接破裂的金膜,这可以形成导电的“岛-隧道” (IT) 结构以补偿裂纹并保持导电性。通过使用可拉伸导体作为电极记录人体肱桡肌表面肌电图并监测正常和癫痫状态下大鼠的皮层电图信号,证明了可拉伸导体的高性能。所开发的策略显示出为柔性电子产品的制造提供新视角的潜力。
零排放 – 利用环境空气转化为液体来储存能量 位置无关 – 可以与可再生能源农场或电网中的关键节点共置 通过在过程中利用热存储来提高往返效率 (RTE)
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
2021 年 12 月 23 日星期四,阿丽亚娜空间公司的阿丽亚娜 5 号火箭搭载着美国宇航局的詹姆斯·韦伯太空望远镜,在位于法属圭亚那库鲁的欧洲航天港圭亚那航天中心的发射台上。詹姆斯·韦伯太空望远镜(有时称为 JWST 或 Webb)是一台大型红外望远镜,主镜直径为 21.3 英尺(6.5 米)。该天文台将研究宇宙的每个阶段