Théo Liénard——市长、Myriam Taverna、Stéphanie Descroix、Thanh Duc Mai。用于样品处理、分离和定量的微尺度电泳中的液滴接口策略:综述。 Analytica Chimica Acta,2021,1143,第 281-297 页。�10.1016/j.aca.2020.09.008�。 �第 03493600 页�
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月11日发布的此版本中显示在版权所有的此版本中。 https://doi.org/10.1101/2025.02.09.637351 doi:Biorxiv Preprint
人多能干细胞(HPSC)的基因组完整性对于研究和临床应用至关重要。然而,在HPSC产生和常规培养物以及基因编辑后,遗传差异可能会积累。应定期监测它们的发生,但是评估HPSC基因组完整性的当前测定法不完全适合这种常规筛查。为了解决这个问题,我们首先对100多个出版物和鉴定的738例复发遗传异常(即至少在至少有5个不同的不同科学出版物中发现的重叠异常重叠)进行了大规模荟萃分析。然后,我们基于液滴数字PCR技术开发了一项测试,该测试可能可能检测到从培养上清液样品中提取的DNA中,这些HPSC复发遗传异常的90%以上。该测试可用于常规筛选HPSC中的基因组完整性。
液滴数字PCR(DDPCR)已成为分子诊断中的一种变革性技术,在核酸定量中具有无与伦比的灵敏度和精度。通过将样品划分为数千滴,DDPCR可以实现数字方法进行DNA和RNA分析,克服传统PCR方法的局限性。这种微型审查强调了DDPCR在肿瘤学中的关键进步和应用,包括其在检测循环肿瘤DNA(CTDNA),拷贝数变化(CNV)和表观遗传生物标志物方面的效用。该技术鉴定罕见的遗传事件和Moni Tor肿瘤异质性的能力对癌症的诊断,治疗和监测产生了重大影响。此外,DDPCR在非侵入性液体活检中的作用及其在新兴领域的应用,例如CAR-T治疗监测和肿瘤微生物组分析,证明了其广泛的临床潜力。尽管诸如标准化和成本等挑战,但多重和自动化方面的持续进步有望扩大DDPCR的范围,从而进一步增强了其对个性化医学和分子肿瘤学的贡献。
抽象背景免疫效应细胞 - 相关神经毒性综合征(ICAN)是CD19-定向嵌合抗原受体(CAR)T细胞疗法的常见不良事件。其他神经不良事件尚未被有条不紊地描述和研究。此外,中枢神经系统(CNS)淋巴瘤患者的CART细胞疗法的安全数据仍然有限。主体我们在这里报告说,在Tisagenlecleucel治疗后,发生了一种Guillain-Barré-综合征(GBS)和中央糖尿病肠(CDI),用于与CNS受累的复发高级淋巴瘤。这两种并发症都是对ICANS标准处理的难治性。呼吸道肌肉的无力需要机械通气和气管切开术,而CDI用去氨加压素取代治疗了几周。肌肉神经活检和神经传导研究证实了神经损伤的轴突模式。t细胞 - 富含细胞的肌肉转基因的检测和检测肌肉神经剖面中的转基因意味着Car-T细胞介导的炎症的直接或间接作用。与当前的GBS治疗指南一致,给予静脉免疫球蛋白,并在几个月的时间内观察到逐渐恢复但恢复不完全。结论该病例报告强调了接受CAR-T细胞治疗的患者罕见但严重的神经系统不良事件(例如急性GBS或CDI)的风险。它进一步强调了适当的患者监测和罕见并发症系统报告以最终改善治疗的重要性。
fi g u r e 1脂质液滴:代谢,形态和组成。(a)主要代谢途径和中间代谢产物的简化方案参与LDS的生物发生和消耗。有关其他详细信息,请参见文本。fa,脂肪酸; FA-COA,酰基辅酶A; CPT1,肉碱棕榈转移酶I; CAC,柠檬酸周期; FASN,脂肪酸合酶; Oxphos,氧化磷酸化; ACC,乙酰辅酶A羧化酶; GPAT,甘油-3-磷酸酰基转移酶; AGPAT,1-酰基-SN-甘油-3-磷酸酰基转移酶; PAP,磷脂酸磷酸酶; DGAT,二甘油类酰基转移酶-1和-2; ACSL,酰基-COA合成酶; ATGL,脂肪甘油三酸酯脂肪酶; HSL,激素敏感脂肪酶; MAGL,单酰基甘油脂肪酶; NCEH,中性胆固醇酯水解酶。(b)内质网中发生的LD生物发生的示意图(ER)。酯化后,中性脂质积聚在ER双层中,形成透镜结构,该结构在ER双层内经过相位分离并成长为形成新生LD的细胞质。细胞质和ER蛋白被募集到LDS表面,促进其生长并萌芽到成熟的LDS中。附件蛋白在此过程中合作。在上面板(红色:TAG的化学结构)中说明了脂肪酸(FA)到三酰基甘油(TAG)中的酯化。(c)。用油酸处理肝HuH7细胞以诱导LD形成16小时(左图)。plin2(绿色)用特异性抗体定位,并用Lipidtox染色中性脂质。(n)表示细胞的核。箭头标记高放大倍数插图中的LD。THP-1细胞进行TEM分析(右图)。脂质液滴由它们的球形形态,相对较低的电子密度和通过单个磷脂单层界定。(d)代表LDS上主要蛋白质的简化方案。(e)该方案包含一些由病原体在宿主细胞中分泌的毒力因子操纵的LD蛋白(黑色)的例子(红色)(有关详细信息,请参见文本)。
图 1:t = 0 时初始模拟配置的正面和顶视图(Pb 原子为灰色;Cu 原子为黄色)。该图为 R 0 = 42 nm 液滴,其中两个 Cu 粒子与 Cu (001) 表面接触,扩散方向沿 x 轴,自由表面法线沿 z 轴,液滴和粒子的圆柱轴均沿 y 轴对齐。模拟单元的周期性重复长度设置为 L x = 300 nm 和 L y = 5 nm。
最初发表于:Saddiqi, Naeem-ul-Hasan;Seeger, Stefan (2020)。液滴辅助生长和成型氧化铝和混合氧化铝-硅一维纳米结构。胶体和界面科学杂志,560:77-84。DOI:https://doi.org/10.1016/j.jcis.2019.09.122
我们研究了强磁场中非相互作用电子的二维(2D)液滴,并以任意形状放置在狭窄的电势中。使用适合最低兰道水平的半经典方法,我们获得了近高斯能量特征状态,这些特征态位于电势的水平曲线并具有位置依赖性高度。这个单粒子的见解使我们能够推断出在热力学极限下的局部多体观测值(例如密度和电流)的期望值。特别是沿边缘的相关性是长期的且不均匀的。正如我们所显示的,这与系统的通用低能描述是边缘模式的免费1D手性相形的野外理论,这是简单几何形式中早期作品所知的。征收本征函数的径向依赖性和角度依赖性之间的微妙相互作用最终确保了该理论在潜力的规范角度变量方面是均一的,尽管其明显的不均匀性在更幼稚的角度坐标方面。最后,我们提出了一种方案,通过将液滴降低到微波辐射中来测量各向异性。我们计算相应的吸收率,并表明它取决于液滴的形状和波浪的极化。这些结果,无论是局部还是全局,在固态系统或2D电子气体的量子模拟器中都可以观察到,并具有高度控制限制电位的量子。