摘要:全球范围内正在进行重大的能源转型。这主要是由风能和太阳能等可变能源的引入所驱动。为了保证能源供应满足需求,储能技术将在整合这些间歇性能源方面发挥重要作用。电池可以提供每日能量存储。然而,在抽水蓄能不是可行解决方案的情况下,仍然没有能够提供每周、每月和季节性储能服务的技术。在此,我们介绍了一种基于等温空气压缩/减压和深海压缩空气储存的创新储能方案。等温深海压缩空气储能 (IDO-CAES) 的安装容量成本估计为 1500 至 3000 美元/千瓦,储能成本估计为 1 至 10 美元/千瓦时。IDO-CAES 应作为电池的补充,在未来的可持续能源网中提供每周、每月和季节性的储能周期,特别是在沿海地区、岛屿和海上和浮动风力发电厂以及深海采矿活动中。
经济发展,人口增长和试图通过用太阳能和风能等绿色替代品代替基于化石燃料的技术来使经济脱碳经济,从而刺激了许多商品的大量需求增长,包括钴,锂,niobium,niobium,tantalum和稀有的地球元素(Dolega等人(Dolega等)(Dolega等)2021)。在2022年春季之前的几年中,几乎所有矿产原材料的世界市场价格上涨,钴等金属的价格从2021年初的30,000美元/吨升高到2022年春季的80,000美元左右(DERA 2022)。虽然原材料的价格上涨很多次,并且通常归因于暂时的供应短缺,但一些学者认为,绿色技术所需的矿物质和金属将受到持久的需求增长,可与石油和天然气的十年般的冲刺相当(巴黎和阿塔卡马202222222; Blondel and Kleijn 20222)。此外,最近与Covid-19的大流行有关的发展和乌克兰战争破坏了对全球供应链关系的信任,并恢复了对政治引起的供应短缺的恐惧。随后,原材料策略将被重新调整,很可能导致原材料加剧的争夺,特别关注绿色技术所需的金属。
1 GEOMAR 海洋生物技术中心 (GEOMAR-Biotech),海洋天然产物化学研究部门,GEOMAR 亥姆霍兹基尔海洋研究中心,Am Kiel-Kanal 44, 24106 Kiel,德国 2 化学和生物化学科学跨学科中心 (CICA),科鲁尼亚大学理学院,15071 Coruna,西班牙 3 深海生态和技术部门,亥姆霍兹极地和海洋研究中心,Alfred Wegener 研究所,Am Handelshafen 12, 27570 Bremerhaven,德国 4 那不勒斯费德里科二世大学农业系,Via Università 100, 80055 Portici,意大利 5 那不勒斯费德里科二世大学药学系,Via Domenico Montesano 49, 80131 Naples,意大利 6 基尔大学数学与自然科学学院,Christian-Albrechts-Platz 4, 424118 基尔,德国 * 通讯地址:dtasdemir@geomar.de;电话:+49-431-600-4430
正在研究几个永久性的太阳系体,包括火星和冰冷的月亮。在这样的位置,微生物的寿命必须应对低温和高压和低压,在火星表面上的 * 10 2到10 3 pa,在冰冷月球地下海洋中的 * 10 8 –10 9 pa。细菌肉细菌由以前被证明在低温下和低压或高压下没有氧气的物种组成,但迄今尚未探索该属的整个压力范围。在本研究中,我们在2 c的厌氧条件下,在复杂的液体培养基中进行了14种代表11种的肉网菌株,在2 c和一系列压力下,跨越5个数量级的压力,从10 3
除了开发空间仪器、航空电子设备和小型卫星外,SwRI 还是五项 NASA 太空任务的首席研究员所在地,研究范围从太阳到太阳系外围,包括 2021 年发射的对木星特洛伊小行星的露西号任务。
• 多金属结核在克拉里昂-克利珀顿断裂带、中印度洋盆地和西太平洋很常见。 3 多金属结核主要含有锰、铁、硅酸盐和氢氧化物。据国际海底管理局称,这些结核的开采因其镍、铜、钴、锰和稀土元素 (REE) 含量而受到关注,以满足对这些矿物日益增长的需求。此外,结核中还含有微量钼。 4 • 西南印度洋海脊、中印度洋海脊和中大西洋海脊正在勘探多金属硫化物。 5 多金属硫化物含有大量的铜、锌、铅、铁、银和金。 • 富钴结壳在许多情况下出现在各国的专属经济区 (EEZ) 内,目前正在西太平洋进行勘探。 6 钴结壳在矿物成分上与多金属结核大体相似,但钴结壳因钴含量较高、铂和稀土元素 (REE) 含量较高、镍和锰含量较高而受到人们的关注。因此,锰、铜、钴、镍、钼、稀土元素、锌、银、金和铂是深海采矿矿物,由于需求不断增长而受到人们的关注最多。这些矿物将在第 1.2 节中进一步讨论。
机器人设计,自主权和传感器集成的最新进展为探索深海环境创造了解决方案,可将其转移到冰卫月的海洋中。海洋平台尚未具有太空的任务自治能力(例如,火星坚持不懈的漫游者任务),尽管不同水平的自主导航和映射以及采样级别是一种可观的能力。在这种设置中,他们越来越生物添加的设计可以允许使用复杂的环境情景,并具有新颖的,高度集成的生命检测,海洋学和地球化学传感器套件。在这里,我们通过与三个主要研究领域的太空技术协同作用来实现即将在深海机器人技术中的进步:仿生结构和推进(包括电源和生成),人工智能和合作网络以及生命检测仪器设计。带有微型和更多弥漫性传感器套件的新形态和材料设计将推进机器人传感系统。控制导航和通信的人工智能算法将通过合作网络进一步开发行为生物塑料。解决方案将必须在有线观测器,中微子望远镜的基础设施网络中进行测试,以及具有议程和模式超出我们工作范围的议程和模式的离岸行业网站,但可以在固定和移动平台的操作组合中汲取灵感。
机器人设计、自主性和传感器集成方面的最新进展为探索深海环境创造了解决方案,这些解决方案可转移到冰冷卫星的海洋中。海洋平台尚未具备其太空同类(例如最先进的火星毅力号探测器任务)的任务自主能力,尽管不同级别的自主导航和测绘以及采样是一种现存能力。在这种情况下,它们日益仿生的设计可能允许进入复杂的环境场景,并配备新颖、高度集成的生命检测、海洋学和地球化学传感器包。在这里,我们通过与三个主要研究领域的空间技术的协同作用,展望了深海机器人技术即将到来的进步:仿生结构和推进(包括电力存储和发电)、人工智能和合作网络以及生命检测仪器设计。新的形态和材料设计,以及小型化和更分散的传感器包,将推动机器人传感系统的发展。控制导航和通信的人工智能算法将允许通过合作网络进一步发展行为仿生。解决方案必须在有线天文台、中微子望远镜和海上工业场地的基础设施网络中进行测试,其议程和模式超出了我们的工作范围,但可以从固定和移动平台操作组合的提议示例中汲取灵感。
土星最大的卫星之一土卫二拥有广阔的地外海洋,这片海洋正日益成为未来探索假定生命的研究计划的热点。本文提出了一种针对土卫二外海洋的新型生物探索概念设计,根据最先进的传感器和机器人平台(陆地深海研究中使用的技术),重点研究各种尺寸的生物(从单细胞到多细胞和类似动物)的假定存在。特别地,我们专注于基于光声成像和被动声学以及分子方法的直接和间接生命探测能力的结合。这种以生物为导向的采样可以伴随同时进行的地球化学和海洋学测量,以提供与外海洋探索和理解相关的数据。最后,我们描述了这种多学科监测方法目前如何通过有线(固定)观测站及其相关的移动多参数平台(即自主水下和遥控航行器,以及爬行器、探测车和仿生机器人)在陆地海洋中实现,以及如何将其改进的设计用于外海洋探索。关键词:外海洋——土卫二——深海技术——自主水下航行器——爬行器——低温机器人。天体生物学 20,xxx–xxx。
摘要:对可再生能源的研究是研究的积极领域,光伏和风是最具代表性的技术。基于海水的温度梯度,有希望的可再生能源是海洋热能转化(OTEC)。这项技术具有两个矛盾的特征,因为其效率相对较低,另一方面,其能源几乎是无限的。OTEC研究专注于优化能量提取,并将不同的技术用于此目的。本文介绍了全球OTEC技术的进步和应用的回顾。在整个文档中,分析了深海水的不同用途;此外,审查了通过海洋温度梯度产生能量的当前系统,并突出显示了每种方法的主要优点和缺点。也详细介绍了全球及其在计划阶段的技术运营,施工变化以及已开发的项目。两个主要的结论是,这项技术仍在开发中,但这是非常有希望的,尤其是对于几乎没有饮用水的地区而言。第二,鉴于高度实施成本和较低的转换效率,该技术的发展必须由政府赞助。