摘要 增材制造电子产品 (AME),也称为印刷电子产品,对于预期的物联网 (IoT) 越来越重要。这需要制造技术,允许将各种纯功能材料和设备集成到不同的柔性和刚性表面上。然而,目前的基于墨水的技术存在复杂且昂贵的墨水配方、与墨水相关的污染(添加剂/溶剂)以及有限的印刷材料来源等问题。因此,打印无污染和多材料结构和设备具有挑战性。这里展示了一种利用纳米和微米级定向激光沉积的多材料增材纳米制造 (M-ANM) 技术,允许打印横向和垂直混合结构和设备。这种 M-ANM 技术涉及对放置在打印机头内的目标转盘上的固体目标进行脉冲激光烧蚀,以原位生成无污染的纳米颗粒,然后通过载气将其引导至喷嘴并到达基板表面,在那里它们被第二束激光实时烧结和打印。目标转盘按照预定的顺序将特定目标与烧蚀激光束接触,从而在单个过程中打印多种材料,包括金属、半导体和绝缘体。利用这种 M-ANM 技术,可以打印和表征各种多材料设备,例如银/氧化锌 (Ag/ZnO) 光电探测器和混合银/氧化铝 (Ag/Al 2 O 3 ) 电路。我们的 M-ANM 技术的质量和多功能性为新兴物联网提供了潜在的制造选择。关键词:印刷电子、多材料打印、增材纳米制造、干打印、柔性混合电子。介绍随着物联网 (IoT) 的出现,大多数物体和系统都有望变得智能,人们对开发新材料和先进制造技术产生了浓厚的兴趣,以便将各种功能(包括传感器、电池、显示器和电子设备)直接集成到不同的表面上 [1-6]。传统的电子制造方法,如光刻、聚焦离子束 (FIB) 和电子束光刻 (EBL),需要复杂且昂贵的洁净室设施或高真空设备,并且还涉及多个减材步骤。因此,人们对可以在大气条件下工作并在各种表面上打印的经济高效的增材制造/打印技术产生了广泛的兴趣。
Aditya Mehra独立研究人员摘要:在这项研究中,作者研究了整合符号和深度学习方法的实施,以开发混合AI系统以改善复杂的决策。常规AI方法区分了基于一阶逻辑的符号推理,基于符号逻辑的系统和基于数据的系统的神经网络。每个都有其优势和局限性。也值得注意的是,符号AI很容易解释,并且可以有效地处理结构化知识。同时,深度学习擅长处理大量非结构化数据和识别模式。因此,该研究的重点是开发两种方法的合并模型,其合并将提供更大的优势,并在与决策相关的任务中提供更好,更有效的解决方案。显然,研究对AI的贡献是显而易见的。首先,它试图将符号推理与深度学习与一个弥补另一个弱点的优势联系起来,包括在深度学习中缺乏可解释性和符号系统中极端形式主义。提出的方法涉及通过新的建筑方法创建和应用符号/语义和深度学习的双重AI架构。符号推理组件是基于规则的系统。我们将符号推理组件作为基于规则的系统实现。我们将深度学习组件作为神经网络创建。这些组件可以在一个整体系统中清楚地相互交互。几个重要的发现表明,与基于符号思维或深度学习的决策模型相比,用于决策的混合AI模型可提供更好的决策精度。集成有助于改善结构化和非结构化数据的处理,从而提高系统结果的可靠性。此外,还有更好的解释性;符号推理部分可以解释为什么做出这样的决定,并且对新的和复杂的问题具有增强性。这项研究的后果突出了在应用程序和财务等特定领域开发的关键领域,在这些领域中,做出正确且易于解释的决策至关重要。AI的主要问题是考虑准确性的解释;混合模型提出了随后开发AI系统的可能方向。因此,本研究为进一步研究其他混合结构提供了方向,增强了整合方法,并将提出模型的使用扩展到其他决策问题。
~ 年轻人生活、工作和娱乐的地方 ~ 住友林业株式会社(总裁兼代表董事:三吉敏郎;总部:东京;以下简称“住友林业”)和中央日东地株式会社(总裁兼首席执行官:三宅清;总部:东京;以下简称“中央日东地”)欣然宣布,将在佐治亚州亚特兰大市中心西区开发拥有 250 个单元的多户型社区 NOVEL Blandtown。该项目将由住友林业的全资子公司 Crescent Communities, LLC 与中央日东地的全资子公司 Chuo-Nittochi I LLC 合资开发。住友林业的全资子公司 SFC Asset Management Co., Ltd.(总裁:吉泽裕二郎;总部:东京)将协调合资企业内的沟通。该建筑为七层混合木结构和钢筋混凝土 (RC) 结构。施工计划于 2024 年 11 月开始,已完工部分的租赁将于 2026 年 10 月分阶段开始。整个社区计划于 2027 年 5 月完工。■ NOVEL Blandtown 特点 NOVEL Blandtown 面向活跃的年轻人,他们渴望过上可以在亚特兰大市中心生活、工作和娱乐的城市生活,拥有 250 个单元,从单间公寓到两居室公寓不等。该社区将提供屋顶休息室和游泳池、带木质甲板的中央庭院以及全套其他设施,包括用于观看电影的大屏幕。NOVEL 是 Crescent Communities 的高端市场价多户型产品,在每个公寓住宅、公共空间和整个社区内提供独特的设计特色和设施。对于每个社区,Crescent 都会举办名为“CANVAS”的深入设计和身份识别会议,其中许多学科和利益相关者进行合作,以确保社区具有真实性和吸引力。 NOVEL Blandtown 的开发将充分考虑该地区的历史和特色,使其成为当地社区的一大亮点。该建筑采用混合结构,下层两层为钢筋混凝土,上层五层为木材。与全混凝土结构相比,这种设计降低了成本,并降低了施工期间的二氧化碳排放量。上层采用木框架墙方法,使用标准 2x4 木材,这也有助于储存木材在生长过程中吸收的碳,有助于长期脱碳。
肽类导向的 CdSe 纳米粒子组装 Madison Monahan a、Bin Cai b、Tengyue Jian b、Shuai Zhang b,c、Guomin Zhu b,c、Chun-Long Chen b,d、James De Yoreo a,b,c、Brandi M. Cossairt a * a 华盛顿大学化学系,Box 351700,华盛顿州西雅图 98195-1700。b 太平洋西北国家实验室物理科学部,华盛顿州里奇兰 99354。c 华盛顿大学材料科学与工程系,华盛顿州西雅图 98195-1700。d 华盛顿大学化学工程系,华盛顿州西雅图 98195。*cossairt@uw.edu 摘要。蛋白质的高信息含量驱动它们的层次化组装和复杂功能,包括无机纳米材料的组织。类肽提供了一种与蛋白质非常相似的有机支架,但溶解度范围更广,侧链和功能组易于调节,可创建具有原子精度的各种自组装结构。如果我们能够利用这种模式并了解控制它们如何引导无机材料成核和组装以设计此类材料内的秩序的因素,那么功能和基础科学的新维度就会出现。在这项工作中,类肽管和片被探索为组装胶体量子点 (QD) 和簇的平台。我们已成功合成了具有双官能化封端配体的 CdSe QD,该配体含有羧酸和硫醇基团,并将它们与含有马来酰亚胺的类肽混合,以通过共价键在类肽表面上创建 QD 组装。这种结合在类肽管、片和 CdSe QD 和簇中被视为成功。可以看出,这些粒子对类肽表面具有较高的偏好性,但与类肽上羧酸基团的非特异性相互作用限制了通过马来酰亚胺结合对 QD 密度的控制。用甲氧基醚替换羧酸基团允许控制 QD 密度作为马来酰亚胺浓度的函数。1 H NMR 分析表明,QD 与类肽的结合涉及通过羧酸盐官能团结合的一组表面配体,从而使硫通过共价键与马来酰亚胺结合。总体而言,我们已通过共价键展示了 CdSe-类肽相互作用的兼容性和控制,其中不同的类肽结构和 CdSe 粒子可产生复杂的混合结构。简介。
弗劳恩霍夫制造技术与先进材料研究所 (IFAM) 的研究人员开发出一种新型聚合物补片,它可以显著加速和简化以前费力、昂贵且耗时的受损轻型飞机部件修复过程。将这种可热成型、可回收的修补片压在受损区域,仅需 30 分钟即可完全固化。这种创新的纤维增强塑料用途广泛,可用于从航空到骨科等不同行业。修复轻型纤维复合材料部件(如用于飞机机翼、机身段、尾翼表面和舱门的部件)是一个费时、昂贵的过程,需要多个工作步骤。受损区域通常使用复杂的湿层压工艺或在表面应用纤维增强聚合物 (FRP) 或铝结构(称为双层)来修复。然而,这些方法需要较长的固化时间并需要额外的粘合剂。弗劳恩霍夫 IFAM 的研究人员现已开发出一种由动态聚合物网络(业内称为 vitrimers)制成的修补片,可将之前漫长而费力的修复过程缩短至 30 分钟。这种创新材料基于苯并恶嗪,这是一种新型热固性材料,也称为热固性材料,其真正特别之处在于,聚合塑料不会熔化,也不会像湿法层压中使用的传统树脂系统那样表现出其他行为。聚合物的动态网络过程使局部加热材料成为可能。完全固化的修补片在加热状态下可适应修复部位。在室温下,聚合物具有热固性,因此修补片不粘,储存时稳定。这节省了能源,因为修补片可以在室温下储存,不需要冷藏,从而降低了储存成本。修补片使用压力和热诱导交换反应应用于需要修复的轻质部件。它能够快速修复,30 分钟内完全固化。无需使用反应性危险材料,而传统树脂系统则必须如此。玻璃体特性使得可以在需要时移除补片,而不会留下任何残留物。“我们的无粘合剂、储存稳定的纤维增强补片可以直接修复受损的复合材料和混合结构。由于聚合物本质上是一种玻璃体,因此补片在储存过程中的表现类似于传统的热固性复合材料,但它也
在旋转电流的生成,控制和检测中进步,并且电荷 - 自旋互转换在这些过程中起着基本作用。[2–4]电荷和自旋电流之间的互音版本取决于两个现象:旋转大厅(SHA)和旋转霍尔(ISHE)效应,这些效应允许在横向旋转电流中转换电流电流,反之亦然,而具有大型旋转 - 轨道 - 轨道 - 轨道 - 轨道 - 轨道 - 轨道互联网(SOI)。[2-5]研究这些过程的基本系统是正常的金属(NM)/磁性材料(M)双层,这是由复杂的自旋混合结构G↑↑州= G R + Ig I的旋转传输跨NM/ M界面。[6]当自旋电流到达NM/M界面时,可以根据M材料的磁磁为m和旋转极化σ的磁磁(由于σ和m为非collineare exter exters exters extere extere and CollineARINERINE)的磁极偏振电流(g r and g r and g r and g r and i与damping like compand coptime coptimeclike和dymeke like compected promeke and tor pemplice),可以吸收或反射。[7]此外,当σ与σ呈线时,自旋 - 链接电导(G s)[8]与界面处的自旋挡泥散射有关。但是,其他界面效应,例如,磁接近效应,[9] Rashba-Edelstein效应[10]或[10]或Nomal nomal nomal nomalos nomal onomal onals onaloal nomal onals onaloal nomal onaloal nomal onaloal nomal onnomal效果,也可能会播放clinef的作用。由于旋转设备的开发必然涉及自旋电流的流动,因此界面的重要性及其适当的表征是显而易见的。[12]因此,具有正确的材料和正确的表征技术对于旋转的发展至关重要。幸运的是,可用于研究通过NM/M界面的自旋传输的理想技术,即自旋霍尔磁磁性(SMR)。smr是由She和Ishe同时作用引起的非平衡接近效应。[7,13] Being sensitive only to the magnetic properties of the topmost atomic layers of the magnetic material, M, close to the NM/M interface, [14,15] SMR allows to study interfacial magnetic proper- ties of magnetic materials in contact to NM via magnetotrans- port experiments and to determine important parameters, such as spin diffusion length, λ sd , and the spin Hall angle, Θ SH , of different NM层或不同的自旋电导。SMR已用于研究几种磁性绝缘材料中的磁性结构,包括铁磁性,[13,16,17]和反磁性有序。[18,19]此外,SMR已证明
地址:NTNU物理学系电子邮件:jacob.linder@ntnu.no挪威科学技术大学电话:+47 735 918 68Høyskoleringen5,7491 Norway Web:https://sites.google.com/view/lindergroup教育2009 ph.d ph.d,主管:AsleSudbø。标题:非常规超级传导混合结构中的量子传输和接近性效应。2005 M.Sc. (Sivilingeniør)在物理和数学领域具有理论物理学专业化,挪威科技大学专业就业2013年 - 现任挪威NTNU物理学教授。 2010 - 2013年挪威NTNU副教授。 2009 - 2010年挪威科技大学博士后研究员。 2005 - 2009博士学位,挪威科学技术大学AsleSudbø教授。 主要奖项和赠款2025 PI授予Fripro Research Grant(9 Mill Nok),挪威研究委员会,2022年,自然科学和信息技术和电气工程学院的学生对学生进行了最佳讲师的评价。 2021 Co-Pi用于Fripro Research Grant(8工厂。 nok),挪威研究委员会2017 PI杰出中心赠款(200米。 200 nok),挪威研究委员会2016年ERC的决赛入围欧洲研究委员会。 2014-2018杰出的学术研究员计划资金(3工厂 nok),NTNU 2014-2018年轻研究人才的单人PI(6工厂 nok),挪威研究委员会2012-2017战略研究所计划的共同主持人赠款(12工厂2005 M.Sc.(Sivilingeniør)在物理和数学领域具有理论物理学专业化,挪威科技大学专业就业2013年 - 现任挪威NTNU物理学教授。2010 - 2013年挪威NTNU副教授。2009 - 2010年挪威科技大学博士后研究员。2005 - 2009博士学位,挪威科学技术大学AsleSudbø教授。主要奖项和赠款2025 PI授予Fripro Research Grant(9 Mill Nok),挪威研究委员会,2022年,自然科学和信息技术和电气工程学院的学生对学生进行了最佳讲师的评价。2021 Co-Pi用于Fripro Research Grant(8工厂。nok),挪威研究委员会2017 PI杰出中心赠款(200米。nok),挪威研究委员会2016年ERC的决赛入围欧洲研究委员会。2014-2018杰出的学术研究员计划资金(3工厂nok),NTNU 2014-2018年轻研究人才的单人PI(6工厂nok),挪威研究委员会2012-2017战略研究所计划的共同主持人赠款(12工厂nok)2012年美国物理社会杰出裁判,美联社2010-2016弗里普罗研究赠款的主要PI(7工厂。nok),挪威研究委员会,2010年Yara的Birkeland奖,全国最佳物理学博士学位2010年全国最佳博士学位自然科学博士学位,皇家挪威挪威科学学会和2010年2010年奖
近年来,沙特阿拉伯的能源部门观察到了几种转变和改革。这种持续的过渡导致地方一级的各个部门发生了变化。换句话说,将能源系统中参与者与机构之间的不同相互作用与先前的能源系统进行了比较。已经表明,当它们从一种能源混合结构转变为另一种能源过渡时,不仅取决于由政府领导的这样的国家政策,而且还取决于其他各个方面,维度和复杂的能源行业的复杂相互作用,除了涉及法律,基础设施,财务因素,竞争竞争的障碍,等等的障碍,等等。这项研究继续了这些参与者的作用,这些参与者通过不同的阶段干预了能量转变的进展。沙特阿拉伯的燃料密集型电力最多,人均需求逐渐增长,根据“ Ember的全球电评论”发表的一份报告。与天然气和油的发电相比,总能量混合物的可再生能源贡献非常低。根据BP对世界能源2021的统计评论,其电力供应的0.3%来自2020年的可再生能源。然而,当我们查看近年来不同层次的发展时,当前的后果并不一定反映了现实。这些改进可以分为不同的水平和维度,以确定主要参与者在能量转变进度中的作用,以评估和改善对过渡的理解。这种抽象的尝试使用多级别的透视框架来查看最终哪些动作和参与者是促进能量过渡过程的真正驾驶员的要素?这项研究的重要性是,以前没有研究通过使用此框架来调查在沙特阿拉伯或海湾合作委员会国家的能源过渡。因此,本研究的目的是通过描述参与者与确定促成者之间的当前相互作用以及在本地电力系统内的低碳能量转变的障碍来提供一个起点,以理解地方一级的能量过渡。重要的是要指出,鉴于深度和复杂性如何在这三个层面上解释过渡的事实,该研究试图阐明沙特阿拉伯的可再生能源转变部署的主要主题和发展和发展。2017年,沙特阿拉伯提出了国家可再生能源计划,计划满足对使用可再生资源的日益增长的需求。相比之下,公共投资基金(PIF)通过与投资者进行直接谈判来开发GIGA规模的项目,从而领导着70%的可再生能源目标。但是,可再生能源开发项目办公室(REPDO)将拍卖其余30%的公用事业。它通过竞争过程监督该目标的30%的采购。此外,国家战略中采取的步骤带来了重大成就。在这种情况下,可再生能源项目的增长,启动了五个新项目,以使用NREP下的可再生能源发电,Repdo推进了其雄心勃勃的可再生能源编程的第四和第五阶段的计划,总计3,300兆瓦在2021年。在最后一轮中,政府针对七个太阳能项目完成了七个太阳能项目的最终价格,另一方面,平均价格约为18.3美元/兆瓦。到2030年到2030年,通过循环碳经济(CCE)的方法,可持续的氢使用以及减少了278 MT的排放,使Saudi Aripia的良好位置使驾驶不断增长,并使可持续的发展前景提高了不断的发展。例如,沙特阿拉伯因其宣布将蓝色氨向日本发货而受到关注。世界上第一个对环保高级蓝色氨的发货。