Aditya Mehra独立研究人员摘要:在这项研究中,作者研究了整合符号和深度学习方法的实施,以开发混合AI系统以改善复杂的决策。常规AI方法区分了基于一阶逻辑的符号推理,基于符号逻辑的系统和基于数据的系统的神经网络。每个都有其优势和局限性。也值得注意的是,符号AI很容易解释,并且可以有效地处理结构化知识。同时,深度学习擅长处理大量非结构化数据和识别模式。因此,该研究的重点是开发两种方法的合并模型,其合并将提供更大的优势,并在与决策相关的任务中提供更好,更有效的解决方案。显然,研究对AI的贡献是显而易见的。首先,它试图将符号推理与深度学习与一个弥补另一个弱点的优势联系起来,包括在深度学习中缺乏可解释性和符号系统中极端形式主义。提出的方法涉及通过新的建筑方法创建和应用符号/语义和深度学习的双重AI架构。符号推理组件是基于规则的系统。我们将符号推理组件作为基于规则的系统实现。我们将深度学习组件作为神经网络创建。这些组件可以在一个整体系统中清楚地相互交互。几个重要的发现表明,与基于符号思维或深度学习的决策模型相比,用于决策的混合AI模型可提供更好的决策精度。集成有助于改善结构化和非结构化数据的处理,从而提高系统结果的可靠性。此外,还有更好的解释性;符号推理部分可以解释为什么做出这样的决定,并且对新的和复杂的问题具有增强性。这项研究的后果突出了在应用程序和财务等特定领域开发的关键领域,在这些领域中,做出正确且易于解释的决策至关重要。AI的主要问题是考虑准确性的解释;混合模型提出了随后开发AI系统的可能方向。因此,本研究为进一步研究其他混合结构提供了方向,增强了整合方法,并将提出模型的使用扩展到其他决策问题。
主要关键词