电子邮件地址:paul.ortiz@univ-lorraine.fr (Paul Ortiz)、s.kubler@univ-lorraine.fr (Sylvain Kubler)、eric.rondeau@univ-lorraine.fr (Éric Rondeau)、jean-philippe.georges@univ-lorraine.fr (Jean-Philippe Georges)、G.Colantuono@leedsbeckett.ac.uk (Giuseppe Colantuono)、A.Shukhobodskiy@leedsbeckett.ac.uk (Alexander Alexandrovich Shukhobodskiy)
与能源使用相关排放的临时年度和季度估计是根据最新库存数据计算的,结合了Desnz在能源趋势中发布的临时内陆能源消耗统计。与库存的最后一年相比,来自能量趋势的数据用于估计燃料使用情况的变化,以近似排放的变化。从年度数据中产生季度排放估算值,使用每个季度使用的燃料比例。由于当时有限的数据可用于与能源使用无关的排放,因此对其他排放的临时估计是基于一种简单的方法,因为假设排放量会从上一年的总数变化,而与最近的DESNZ能源和排放预测中的估计值成比例,或者假设这些排放量与前一年保持不变。有关该方法的更多信息,请在统计发布和随附的方法论中提供。
美国的个人资料保罗·乌尔里希(Paul Ullrich)博士是劳伦斯·利弗莫尔国家实验室(Lawrence Livermore National Laboratory)气候韧性的负责人,也是加州大学戴维斯分校的区域和全球气候建模教授。他是美国能源部气候模型诊断与比对对比的主要研究人员(PCMDI)。他的工作着重于区域气候信息的开发,分析和评估。在这个角色中,他与美国各地的从业人员团体紧密合作,以了解其气候数据的需求,并了解气候变化的地区气候和极端天气事件如何影响。
5 2008年气候变化法:http://www.legislation.gov.uk/ukpga/2008/27/27/contents 6碳预算:https://www.gov.uk/guidance/guidance/carbon-budgets/carbon-budgets 7碳账目法规: https://www.legislation.gov.uk/uksi/2009/1257/contents/made 8 The EU Emissions Trading System (EU ETS): https://climate.ec.europa.eu/eu-action/eu-emissions-trading-system-eu-ets_en 9 Annual Statement of Emissions: https://www.gov.uk/government/collections/annual-statements-of-emissions 10 Final statement for the first carbon budget period: https://www.gov.uk/government/statistics/final-statement-for-the-first-carbon-budget-period 11 Final statement for the second carbon budget period: https://www.gov.uk/government/statistics/final-statement-for-the-second-carbon- budget-period 12 Final statement for the third carbon budget period: https://www.gov.uk/government/statistics/final-statement-for-the-third-carbon-budget- period
这种减少的大部分是由于公司建筑物中的天然气使用减少所致,其余的商业建筑中的天然气使用量减少。在64个公司收费的公司站点中,有41个在2023 - 24年的使用情况下减少。气体使用的总体减少部分与该县的天气变暖有关。“加热学天”是响应外部温度所需的预期加热的量度。在此分析中,一个加热度日相当于1 O C以下15.5 O C低于15.5 o C,累积24小时。所使用的温度被当地在Donington Weather Station的当地捕获。在所有理事会建筑物中,从2022-23的1,965下降到2023 - 24年的1,847的供暖学天数量。在理事会建筑物中,供暖学天数的数量不是累积的,因此,安理会的每座建筑物在2023 - 24年都经历了1,847个供暖学天。有关加热学天数的更多信息,请参见大都会办公室气候数据门户。县大厅显示,节省300,419千瓦时的天然气使用情况最大。这主要是由于生物质锅炉的190,000 kWh(13%)的产生增加。通过公共部门的脱碳计划实现了这一代人,以及从2022年到2024年生效的公共部门脱碳计划。逃避排放量从2022-23中的59.7 TCO 2 E增加到2023 - 24年的114.9 TCO 2 E。这些排放是根据理事会在制冷和空调设备上维持的信息计算得出的,以确保遵守F-GAS法规。由于系统中泄漏的性质不同以及随后的维护以充值F-Gase,因此数据经历了较大的年度变化。
基于表1中的数据源以及计算和结果部分中的计算方法,与进口NG相关的总估计的州外温室气体排放量在2018 - 2022年(图3中的蓝线)中有所下降。这种趋势的主要原因是美国EPA在时间序列(顶级灰线)中估计的排放强度降低。此外,从2021 - 2022年开始注意到NG进口体积的少量减少,这也导致排放减少。对于100年和20年的GWP都是如此,尽管图3仅显示了100年GWP的结果。
自然资源研究所芬兰(Luke),Latokartanonkaari 9,FI-00790赫尔辛基,芬兰B环境科学司,橡树岭国家实验室,贝塞尔山谷路1号,奥克山脉,田纳西州田纳西州37830,美国田纳西州37830在Zvolen,T.G。Masaryka 24, 96001 Zvolen, Slovakia e Forest Science and Technology Centre of Catalonia (CTFC), 25280 Solsona, Spain f Basque Centre for Climate Change (BC3), Scientific Campus of the University of the Basque Country, 48940 Leioa, Spain g Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain h School of生物科学,阿伯丁大学。23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT23 St Machar Drive,Aberdeen AB24 AB24,英国苏格兰,I Wageningen University and Research,Wageningen环境研究(WENR),DROEVENDAALSESTEEG,3,6708pb Wageningen,荷兰J Forestry and Forest Products and Forest Products and Forest Products Research Institute(Eagan)欧洲森林研究所,Yliopistokatu 6B,FI-80100,芬兰LAMSTERDAM LIFE与环境研究所(A-Life),Vrije Universiteit Amsterdam,1081 HV,阿姆斯特丹,阿姆斯特丹,荷兰MEARZ MEARCIES,VRIJE LIJEITITICITITICITITICITITICITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITITIT
摘要:海上运输按数量计算全球贸易的80%以上,并且仍然是长距离商品运动的最能量模式。但是,该行业约占全球温室气体(GHG)排放量的3%,如果不受监管的话,到2050年,这一份额预计将上升到17%。在响应中,国际海事组织(IMO)实施了初始和短期措施,以提高能源效率并减少排放。2023 IMO战略进一步引入了中期措施,包括基于市场的机制(MBM),例如温室气体征税和燃料强度法规。这项研究使用将海洋工程和经济学结合的集成计算模型评估了这些措施的经济和环境影响。我们的结果表明,所有提出的措施都与IMO的排放减少中间目标保持一致,直到2035年,将绝对排放量降低了50%以上。然而,在北非,东非,西非和南亚的地区,经济影响差异很大,对国内生产总值和贸易产生了最大的不利影响。在这些措施中,温室气体征税的经济和食品价格影响最大,而修订后的燃油强度机制则降低了成本,尤其是在短期内。收入再分配减轻了GDP损失,但区域福利不均。这项研究通过提供政策影响的全面比较,利用一般平衡模型(GTAP)来捕获在先前研究中经常忽略的间接影响,从而有助于IMO讨论。发现海事部门中需要公平且可行的脱碳策略的需求。
摘要:农作物的水状态直接受土壤水的供应影响。因此,本研究旨在分析不同土壤水分含量(80、90、100、100、110、110、110、110和120%的现场容量-FC)和受精系统(常规和施肥)的玉米中的水关系(双跨混合AG 1051)。该实验是在2019年8月至2019年10月至10月的巴西雷夫市,在巴西佩尔南布科州雷·佩恩市的农村乡村农村乡村的农业工程系中进行的实验。实验设计是具有5×2阶乘方案的随机块,四个重复和40个实验单元。在土壤湿度水平以下低于田间容量(100%FC)的100%,增加了玉米植物的相对水分含量,叶片,叶水的潜力和渗透调节。与常规施肥相比,施肥会导致较高的蒸腾率和以95%的田间容量(95%FC)灌溉的农作物中的水效率提高。在提交土壤水分水平以下的植物中,受精系统会影响水,渗透和压力潜力,以及渗透调节。
四个条件会影响道路上的汽车气体排放:1)车辆效率,2)燃料碳含量,3)行驶距离,4)旅行效率。在这四个中,TXDOT只能影响两个:旅行效率和行进距离。TXDOT战略目标是“优化系统性能”和TXDOT预算目标,以“优化服务和系统”(TXDOT,2024b),TXDOT如何解决旅行效率和距离的方式。GHG通过这两个条件在得克萨斯州和其他州的这两个条件下降低,可以统称会导致有意义的共同利益(IPCC,2023a),(USGCRP和Crimmins,NCA5,2023a)(USDOE,USDOE,USDOT,USDOT,USEPA,USEPA,USHUD,USHUD,2023)。但是,大多数运输温室气体减少将通过各种车辆和燃料技术进步(IPCC,2023a),(USGCRP和Crimmins,NCA5,2023a),(USDOE,USDOE,USDOT,USEDOT,USESDOT,USEPA,USHUD,2023)。在项目状态或国家层面上不存在足够的预测方法,无法准确预测何时以及车辆和燃油技术进步的速度。由于这种不确定性影响了未来的公路温室气体排放估算的准确性,因此TXDOT为未来的公路温室气体排放提供了三种方案。有关温室气体排放和减少的详细信息,请参见第3节。