1. Lesellier 等人(2011 年)肌肉注射不同剂量的 BCG 后欧亚獾(Meles meles)免受结核病侵害。疫苗 2. Chambers 等人(2011 年)卡介苗接种可减轻獾结核病的严重程度和进展。伦敦皇家学会学报 B 3. Carter 等人(2012 年)BCG 疫苗接种可降低接种疫苗的獾和未接种疫苗的獾幼崽感染结核病的风险。PloS one 4. Lesellier 等人(2006 年)卡介苗 (BCG) 疫苗在欧洲獾(Meles meles)中的安全性和免疫原性。兽医免疫学和免疫病理学 5. Woodroffe 等人(2017) 接种卡介苗的獾 Meles meles 的游走行为。应用生态学杂志。6. Smith 等人 (2012) 比较獾 (Meles meles) 管理策略以降低牛结核病发病率。PLoS ONE 7. Martin 等人 (2020) 从有针对性的扑杀转向对獾 (Meles meles) 进行 BCG 疫苗接种是否会导致爱尔兰共和国牛群结核病发病率不可接受的增加?爱尔兰共和国的一项实用非劣效性野生动物干预研究 (2011-2017)。预防兽医学
1. 小分子药物设计。小分子药物又称化学药物,是种类最广泛的药物。小分子药物设计分为两个阶段:从头设计和先导化合物优化。• 从头设计。从头药物设计旨在从头开始生产具有理想药理特性的新型、多样化药物分子。关键挑战是有效地遍历离散的化学空间。具体而言,为了规避药物分子的离散性质并减轻强力试错策略,[2]将离散药物分子放宽为可微分支架树 (DST),以使基于梯度的数值优化能够直接更新可微分分子,从而实现基于梯度的药物分子优化。实证研究表明,所提出的 DST 方法具有更高的样本效率,能够在数千次评估(Oracle 调用)中识别所需的分子。Oracle 调用可以是体内实验,也可以是体外实验,而且成本总是很高。这意味着我们的方法将大大降低药物设计的成本。此外,受遗传算法优越但不稳定的性能(由于随机游走行为)的启发,强化遗传算法 [ 1 ] 被设计用于抑制随机游走行为,该算法利用强化学习对有希望的搜索分支进行优先排序并智能地导航离散空间。 生成的分子可以紧密结合与某些重大疾病密切相关的目标蛋白,例如 PDB ID 为 7l11 的靶标,它是 SARS-COV-2(2019-NCOV)主蛋白酶。 此外,为了量化不确定性并彻底探索化学空间,多约束分子采样(MIMOSA)[ 15 ]将药物设计问题公式化为从药物空间上的目标分布中抽样的采样问题。 理想的药物分子具有较大的概率,然后设计一种马尔可夫链蒙特卡洛(MCMC)方法与预训练的图神经网络相结合,从目标分布中采样。 与最强基线相比,它获得了高达 49% 的改进。 • 先导化合物优化。先导化合物优化的目的是通过改善先导化合物的药学特性(如降低毒性、改善吸收)并保持其与先导化合物的相似性来增强先导化合物(通常是从头设计中最有前途的分子)。关键挑战在于满足多个约束条件。为了明确增强相似性约束,复制和细化策略(CORE)[17]旨在利用注意机制从输入的药物分子中选择现有的子结构(子结构是基本构建块),而不是在整个子结构空间中搜索。除了在多个任务中不断改进之外,CORE 在具有稀有子结构的分子中取得了尤为出色的表现,成功率提高了 11%。此外,先导化合物优化需要输入和输出药物分子的大小保持一致。为了满足这一要求,提出了带分子奖励的深度生成模型 (MOLER) [ 14 ],将约束条件代入学习目标中的可微损失函数中。这是一种与模型无关的方法,可以增强几乎所有深度生成模型。
摘要:我们实施了主要基于玻姆力学的量子建模来研究包含事件间强耦合的时间序列。与具有正常密度的时间序列相比,此类时间序列与罕见事件相关。因此,采用高斯统计数据会严重低估其罕见事件的发生。本研究的主要目标是从量子测量的角度研究罕见事件对时间序列概率密度的影响。为此,我们首先使用多重分形随机游走 (MRW) 方法对时间序列的非高斯行为进行建模。然后,我们研究了 MRW 的关键参数 λ 在时间序列导出的量子势中的作用,该参数控制非高斯性程度。我们的玻姆量子分析表明,导出的势在高频下取一些负值(其平均值),然后大幅增加,对于罕见事件,该值再次下降。因此,罕见事件可以在量子势的高频区域产生势垒,当系统横穿该势垒时,这种势垒的影响会变得突出。最后,作为将量子势应用于微观世界之外的一个例子,我们计算了标准普尔金融市场时间序列的量子势,以验证非高斯密度中罕见事件的存在,并证明与高斯情况的偏差。
在路由、网络分析、调度和规划等应用领域,有向图被广泛用作形式模型和核心数据结构,用于开发高效的算法解决方案。在这些领域,图通常会随时间而演变:例如,连接链路可能由于临时技术问题而失败,这意味着图的边缘在一段时间内无法遍历,必须遵循替代路径。在经典计算中,图既通过邻接矩阵/列表显式实现,又以有序二元决策图符号化实现。此外,还开发了临时访问程序来处理动态演变的图。量子计算利用干扰和纠缠,为特定问题(例如数据库搜索和整数分解)提供了指数级加速。在量子框架中,一切都必须使用可逆运算符来表示和操作。当必须处理动态演变的有向图的遍历时,这带来了挑战。由于路径收敛,图遍历本质上不是可逆的。对于动态发展的图,路径的创建/销毁也会对可逆性产生影响。在本文中,我们提出了一种新颖的量子计算高级图表示,支持实际网络应用中典型的动态连接。我们的程序可以将任何多重图编码为一个酉矩阵。我们设计了在时间和空间方面最优的编码计算算法,并通过一些示例展示了该建议的有效性。我们描述了如何在恒定时间内对边/节点故障做出反应。此外,我们提出了两种利用这种编码执行量子随机游走的方法:有和没有投影仪。我们实现并测试了我们的编码,获得运行时间的理论界限并由经验结果证实,并提供有关算法在不同密度图上的行为的更多细节。
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和
此外,偏振起着重要作用,因为它可以影响光束传播的深度。例如,众所周知,圆偏振光比线偏振光传播得更深 [3]。根据散射单元大小,偏振会保留光学记忆 [4]。拉盖尔-高斯 (LG) 光束 [5] 是一种涡旋光束,它可以携带不同类型的偏振(线性、圆形、径向和方位角)以及以ℓ 值的轨道角动量 (OAM) 为特征的相位前沿。具有空间不均匀偏振分布的光束称为矢量光束。各种空间模式(例如径向)具有不可分离的圆偏振和 OAM 部分。偏振和空间模式的结合导致了经典纠缠——Forbes 团队 [6] 使用经典纠缠矢量光束在湍流介质中实现更好的成像。矢量光束的关键特性(例如径向和方位角)结合了偏振和空间模式,它们是不可分离的且相互纠缠。这些特性不仅是量子纠缠所独有的,也适用于经典局部纠缠的矢量光束[6-9]。此外,矢量光束的不可分离特性不仅在光学成像中而且在光通信中都具有重要意义,因为人们正在探索其偏振自由度和空间模式来编码信息[7,10]。此外,根据理论[11],ℓ值越高,透射率越高,穿透能力越好,因此光密度(OD)越低,观察到的散射越少。当光脉冲进入组织等高度散射的介质时,它会分解成三个主要成分:弹道光束、蛇形光束和漫射光束。弹道分量保留了光的原始属性,因为它在前向方向上相干散射,而扩散分量则变得随机并在介质中游走。蛇形分量在前向方向上略微散射,传播路径更短并保留初始信息[12]。本研究重点研究了 LG 矢量涡旋光束在弹道(z < l tr)和扩散(z > l tr)区域通过小鼠脑组织的传输,其中 z 是混浊介质的厚度,l tr 是传输平均自由程[13]。研究了不同厚度小鼠脑组织不同特殊位置的不同类型偏振,以证明经典纠缠在经典极限下以更高光子通量潜在地改善成像方面的作用。大脑是一种由树状结构的神经元和轴突组成的生物组织。神经元由蛋白质聚合物的整合网络组织,这些聚合物被认为是一种手性介质。这种手性介质将通过改变其偏振状态与光的电磁场相互作用;这种效应使大脑成为手性生物等离子体[14]。结构化矢量光有望通过与电偶极子、磁偶极子和